11 research outputs found

    Caspase-8 and Tyrosine Kinases: A Dangerous Liaison in Cancer

    Get PDF
    : Caspase-8 is a cysteine-aspartic acid protease that has been identified as an initiator caspase that plays an essential role in the extrinsic apoptotic pathway. Evasion of apoptosis is a hallmark of cancer and Caspase-8 expression is silenced in some tumors, consistent with its central role in apoptosis. However, in the past years, several studies reported an increased expression of Caspase-8 levels in many tumors and consistently identified novel "non-canonical" non-apoptotic functions of Caspase-8 that overall promote cancer progression and sustain therapy resistance. These reports point to the ability of cancer cells to rewire Caspase-8 function in cancer and raise the question of which are the signaling pathways aberrantly activated in cancer that may contribute to the hijack of Caspase-8 activity. In this regard, tyrosine kinases are among the first oncogenes ever identified and genomic, transcriptomic and proteomic studies indeed show that they represent a class of signaling molecules constitutively activated in most of the tumors. Here, we aim to review and discuss the role of Caspase-8 in cancer and its interplay with Src and other tyrosine kinases

    DNA Damage Regulates the Functions of the RNA Binding Protein Sam68 through ATM-Dependent Phosphorylation

    Get PDF
    Simple Summary Alterations of the complex network of interactions between the DNA damage response pathway and RNA metabolism have been described in several tumors, and increasing efforts are devoted to the elucidation of the molecular mechanisms involved in this network. Previous large-scale proteomic studies identified the RNA binding protein Sam68 as a putative target of the ATM kinase. Herein, we demonstrate that ATM phosphorylates Sam68 upon DNA damage induction, and this post-translational modification regulates both the signaling function of Sam68 in the initial phase of the DNA damage response and its RNA processing activity. Thus, our study uncovers anew crosstalk between ATM and Sam68, which may represent a paradigm for the functional interaction between the DDR pathway and RNA binding proteins, and a possible actionabletarget in human cancers. Cancer cells frequently exhibit dysregulation of the DNA damage response (DDR), genomic instability, and altered RNA metabolism. Recent genome-wide studies have strongly suggested an interaction between the pathways involved in the cellular response to DDR and in the regulation of RNA metabolism, but the molecular mechanism(s) involved in this crosstalk are largely unknown. Herein, we found that activation of the DDR kinase ATM promotes its interaction with Sam68, leading to phosphorylation of this multifunctional RNA binding protein (RBP) on three residues: threonine 61, serine 388 and serine 390. Moreover, we demonstrate that ATM-dependent phosphorylation of threonine 61 promotes the function of Sam68 in the DDR pathway and enhances its RNA processing activity. Importantly, ATM-mediated phosphorylation of Sam68 in prostate cancer cells modulates alternative polyadenylation of transcripts that are targets of Sam68, supporting the notion that the ATM-Sam68 axis exerts a multifaceted role in the response to DNA damage. Thus, our work validates Sam68 as an ATM kinase substrate and uncovers an unexpected bidirectional interplay between ATM and Sam68, which couples the DDR pathway to modulation of RNA metabolism in response to genotoxic stress

    Identification and Biological Characterization of the Pyrazolo[3,4-d]pyrimidine Derivative SI388 Active as Src Inhibitor

    Get PDF
    Src is a non-receptor tyrosine kinase (TK) whose involvement in cancer, including glioblastoma (GBM), has been extensively demonstrated. In this context, we started from our in-house library of pyrazolo[3,4-d]pyrimidines that are active as Src and/or Bcr-Abl TK inhibitors and performed a lead optimization study to discover a new generation derivative that is suitable for Src kinase targeting. We synthesized a library of 19 compounds, 2a-s. Among these, compound 2a (SI388) was identified as the most potent Src inhibitor. Based on the cell-free results, we investigated the effect of SI388 in 2D and 3D GBM cellular models. Interestingly, SI388 significantly inhibits Src kinase, and therefore affects cell viability, tumorigenicity and enhances cancer cell sensitivity to ionizing radiation

    Abl depletion via autophagy mediates the beneficial effects of quercetin against Alzheimer pathology across species

    Get PDF
    Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (A beta)-induced detrimental effects in different C. elegans AD models and it reduces A beta-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against A beta toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD

    c-Abl acetylation by histone acetyltransferases regulates its nuclear-cytoplasmic localization

    No full text
    c-Abl function is strictly dependent on its subcellular localization. Using an in vitro approach, we identify c-Abl as a new substrate for p300, CBP (CREB-binding protein) and PCAF (p300/CBP-associated factor) histone acetyltransferases. Remarkably, acetylation markedly alters its subcellular localization. Point mutagenesis indicated that Lys 730, located in the second nuclear localization signal, is the main target of p300 activity. It has previously been reported that c-Abl accumulates in the cytoplasm during myogenic differentiation. Here, we show that c-Abl protein is acetylated at early stages of myogenic differentiation. Indeed, acetylation on Lys 730 drives c-Abl accumulation in the cytoplasm and promotes differentiation. Thus, Lys 730 acetylation is a novel post-translational modification of c-Abl and a novel mechanism for modulating its subcellular localization that contributes to myogenic differentiation

    FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients

    Get PDF
    Functionally distinct T-helper (Th) subsets orchestrate immune responses. Maintenance of homeostasis through the tight control of inflammatory Th cells is crucial to avoid autoimmune inflammation. Activation-Induced Cell Death (AICD) regulates homeostasis of T cells, and it has never been investigated in human Th cells. We generated stable clones of inflammatory Th subsets involved in autoimmune diseases, such as Th1, Th17 and Th1/17 cells, from healthy donors (HD) and multiple sclerosis (MS) patients and we measured AICD. We find that human Th1 cells are sensitive, whereas Th17 and Th1/17 are resistant, to AICD. In particular, Th1 cells express high level of FAS-ligand (FASL), which interacts with FAS and leads to caspases' cleavage and ultimately to cell death. In contrast, low FASL expression in Th17 and Th1/17 cells blunts caspase 8 activation and thus reduces cell death. Interestingly, Th cells obtained from healthy individuals and MS patients behave similarly, suggesting that this mechanism could explain the persistence of inflammatory IL-17-producing cells in autoimmune diseases, such as MS, where their generation is particularly substantial

    NRF2 connects Src tyrosine kinase to ferroptosis resistance in glioblastoma

    No full text
    Glioblastoma is a severe brain tumor characterized by an extremely poor survival rate of patients. Glioblastoma cancer cells escape to standard therapeutic protocols consisting of a combination of ionizing radiation and temozolomide alkylating drugs that trigger DNA damage by rewiring of signaling pathways. In recent years, the up-regulation of factors that counteract ferroptosis has been highlighted as a major driver of cancer resistance to ionizing radiation, although the molecular connection between the activation of oncogenic signaling and the modulation of ferroptosis has not been clarified yet. Here, we provide the first evidence for a molecular connection between the constitutive activation of tyrosine kinases and resistance to ferroptosis. Src tyrosine kinase, a central hub on which deregulated receptor tyrosine kinase signaling converge in cancer, leads to the stabilization and activation of NRF2 pathway, thus promoting resistance to ionizing radiation-induced ferroptosis. These data suggest that the up-regulation of the Src-NRF2 axis may represent a vulnerability for combined strategies that, by targeting ferroptosis resistance, enhance radiation sensitivity in glioblastoma

    Caspase-8 as a novel mediator linking Src kinase signaling to enhanced glioblastoma malignancy

    No full text
    Caspase-8 is a cysteine protease that plays an essential role in apoptosis. Consistently with its canonical proapoptotic function, cancer cells may genetically or epigenetically downregulate its expression. Unexpectedly, Caspase-8 is often retained in cancer, suggesting the presence of alternative mechanisms that may be exploited by cancer cells to their own benefit. In this regard, we reported that Src tyrosine kinase, which is aberrantly activated in many tumors, promotes Caspase-8 phosphorylation on Tyrosine 380 (Y380) preventing its full activation. Here, we investigated the significance of Caspase-8 expression and of its phosphorylation on Y380 in glioblastoma, a brain tumor where both Caspase-8 expression and Src activity are often aberrantly upregulated. Transcriptomic analyses identified inflammatory response as a major target of Caspase-8, and in particular, NFκB signaling as one of the most affected pathways. More importantly, we could show that Src-dependent phosphorylation of Caspase-8 on Y380 drives the assembly of a multiprotein complex that triggers NFκB activation, thereby inducing the expression of inflammatory and pro-angiogenic factors. Remarkably, phosphorylation on Y380 sustains neoangiogenesis and resistance to radiotherapy. In summary, our work identifies a novel interplay between Src kinase and Caspase-8 that allows cancer cells to hijack Caspase-8 to sustain tumor growth
    corecore