5 research outputs found

    Oral formulation of DPP-4 inhibitor plus Quercetin improves metabolic homeostasis in type 1 diabetic rats.

    Get PDF
    This study aimed to investigate the potential of an oral formulation (QV formulation) containing Quercetin and a Dipeptidyl Peptidase-4 Inhibitor (DPP-4 inhibitor), Vildagliptin, in improving metabolic homeostasis in type 1 diabetes model. Female albino Fischer rats were divided into four groups: untreated control animals (C), untreated diabetic animals (D), diabetic animals treated with QV formulation (DQV), and diabetic animals treated with insulin (DI). Diabetes was induced by injection of alloxan (135?mg?kg body mass)?1 and confirmed by glycemic test. After the 30-day treatment period, biochemical parameters were analyzed in the pancreas, liver, and serum. Histopathological changes in pancreatic tissue were examined by Hematoxyline & Eosin staining and the insulin content in the islet measured by immunohistochemistry with anti-insulin antibody. The glycogen content in the hepatocytes was quantified by Periodic Schiff Acid staining. The QV formulation reduced the glycemia, preserved the pancreatic architecture, increased insulin levels, furthermore ameliorated lipid profile and to promote higher survival rate of animals. Together, our data suggest that the QV formulation treatment was able to normalize metabolic homeostasis in type 1 diabetic rats

    Accelerated Blood Clearance (ABC) phenomenon favors the accumulation of tartar emetic in pegylated liposomes in BALB/c mice liver.

    Get PDF
    Tartar emetic (TE) was the first drug used to treat leishmaniasis.However, its use was discontinued due to high toxicity. Association of TE with liposomes is a strategy to reduce its side effects. Pegylated liposomes (Lpeg) present lower rates of uptake by macrophages and prolonged circulation compared to their nonpegylated counterparts. However, repeated administration of Lpeg can cause an Accelerated Blood Clearance (ABC) phenomenon, whereby recognition of liposomes by antibodies results in faster phagocytosis. Thiswork evaluated the effect of TE administration on histopathological aspects and the effect of the ABC phenomenon on targeting and toxicity in mice. Our results show that treatment with free or liposomal TE had no effect on the erythrocyte count, on liver and spleen weight, and on hepatic, splenic, and cardiac histology in mice. Severe lesions were observed on the kidneys of animals treated with a single dose of free TE. Treatment with TE in Lpeg after induction of ABC phenomenon caused a significant increase in Sb level in the liver without toxicity. Furthermore, mice treated with TE in liposomes showed normal renal histopathology. These results suggest site-specific targeting of Sb to the liver after induction of ABC phenomenon with no toxicity to other organs

    In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic? F127-based polymeric micelle system against Leishmania amazonensis infection.

    Get PDF
    New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania parasites, but low toxicity in mammalian hosts. Flau-A is a naphthoquinone derivative recently showed to presents an in vitro effective action against Leishmania amazonensis and L. infantum species. In the present work, the in vivo efficacy of Flau-A, which was incorporated into a Poloxamer 407-based micelle system, was evaluated in a murine model against L. amazonensis infection. Amphotericin B (AmB) and Ambisome? were used as controls. The animals were infected and later treated with the compounds. Thirty days after the treatment, parasitological and immunological parameters were evaluated. Results showed that AmB, Ambisome? , Flau-A or Flau-A/M-treated animals presented significantly lower average lesion diameter and parasite burden in tissue and organs evaluated, when compared to the control (saline and micelle) groups. Flau-A or Flau-A/M-treated mice were those presenting the most significant reductions in the parasite burden, when compared to the others. These animals developed also a more polarized antileishmanial Th1 immune response, which was based on significantly higher levels of IFN-?, IL-12, TNF-?, GM-CSF, and parasite-specific IgG2a isotype; associated with low levels of IL-4, IL10, and IgG1 antibody. The absence of toxicity was found in these animals, although mice receiving AmB have showed high levels of renal and hepatic damage markers. In conclusion, results suggested that the Flau-A/M compound may be considered as a possible therapeutic target to be evaluated against human leishmaniasis

    A Pluronic? F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection.

    No full text
    Clioquinol (5-chloro-7-iodoquinolin-8-ol or ICHQ) was recently showed to presents an in vitro effective antileishmanial action, causing changes in membrane permeability, mitochondrial functionality, and parasite morphology. In the present study, ICHQ was incorporated into a Poloxamer 407-based polymeric micelles system (ICHQ/M), and its antileishmanial activity was in vivo evaluated in L. amazonensis-infected BALB/c mice. Amphotericin B (AmpB) and its liposomal formulation (Ambisome?) were used as controls. Parasitological and immunological evaluations were performed 30?days after the treatment. Results indicated more significant reductions in the average lesion diameter and parasite burden in ICHQ or ICHQ/M-treated mice, which were associated with the development of a polarized Th1 immune response, based on production of high levels of IFN-?, IL-12, TNF-?, GM-CSF, and antileishmanial IgG2a antibody. Control groups? mice produced high levels of IL-4, IL-10, and IgG1 isotype antibody. No organic toxicity was found by using ICHQ or ICHQ/M to treat the animals, although those receiving AmpB and Ambisome? have presented higher levels of renal and hepatic damage markers. In conclusion, results suggested that the ICHQ/M composition can be considered as an antileishmanial candidate to be tested against human leishmaniasis

    Nanostructured systems improve the antimicrobial potential of the essential oil from cymbopogon densiflorus leaves.

    No full text
    The physicochemical characteristics of nanostructured suspensions are important prerequisites for the success of new drug development. This work aimed to develop nanometric systems containing Cymbopogon densiflorus leaf essential oil and to evaluate their antimicrobial activity. The essential oil was isolated by hydrodistillation from leaves and analyzed by GC-MS. The main constituents were found to be trans-p-mentha-2,8-dien-1-ol, cis-p-mentha2,8-dien-1-ol, trans-p-mentha-1(7),8-dien-2-ol, cis-piperitol, and cis-p-mentha-1(7),8-dien-2-ol. In silico prediction analysis suggested that this oil possesses antimicrobial potential and the main mechanism of action might be the peptidoglycan glycosyltransferase inhibition. Nanoemulsions were prepared by the phase inversion method, and liposomes were made by the film hydration method. Qualitative evaluation of the antimicrobial activity was performed by the diffusion disk assay with 24 microorganisms; all of them were found to be sensitive to the essential oil. Subsequently, this property was quantified by the serial microdilution technique, where the nanoformulations demonstrated improved activity in comparison with the free oil. Bactericidal action was tested by the propidium iodide method, which revealed that free essential oil and nanoemulsion increased cytoplasmic membrane permeability, while no difference was observed between negative control and liposome. These results were confirmed by images obtained using transmission electron microscopy. This study has shown an optimization in the antimicrobial activity of C. densiflorus essential oil by a nanoemulsion and a liposomal formulation of the active substances
    corecore