260 research outputs found

    Interfacial Studies in Semiconductor Heterostructures by X-Ray Diffraction Techniques

    Get PDF
    X-ray radiation is a non-destructive probe well suited to assess structural perfection of semiconductor material. Three techniques are used to study the interfacial roughness, period fluctuations and annealing-induced interdiffusion in various superlattice structures. Reflectivity of long period Si/Si1-xGex multiple quantum wells reveals an asymmetry oriented along the direction of miscut in the interface roughness with the Si1-xGex to Si interfaces being about twice as rough (0.5 versus 0.3 nm) as the Si to Si1-xGex interfaces. For Si-Si0.65Ge0.35 multiple quantum wells, diffuse scattering is minimal for a growth temperature of 550°C and increases substantially at very low (250°C) or high (750°C) growth temperatures. In (SimGen)p short period superlattices, the X-ray reflectivity data are consistent with interfacial mixing over about two monolayers and thickness fluctuations of about 5% vertically in the structures. For superlattices grown on vicinal surfaces, the roughness spectrum is correlated with the surface miscut orientation. Double-crystal X-ray diffraction using symmetrical and asymmetrical reflections has been used to study epitaxial lattice distortion and strain relaxation in InGaAs/GaAs heterostructures grown on (100) on-orientation and 2° off (100) GaAs surfaces. It is shown that thick InGaAs films retain an appreciable fraction of their initial strain and that their crystal lattice is triclinically distorted. The magnitude of the deformation is larger when growth is carried out on a vicinal surface

    Surface Stress, Morphological Development, and Dislocation Nucleation During SixGe1-x Epitaxy

    Get PDF
    Utilizing Ge marker layer experiments combined with atomic number contrast (Z-contrast) imaging, we have studied the evolving surface morphology of SixGe1-x alloys during growth by molecular beam epitaxy. The marker layers map out the instability transition between planar two-dimensional (2D) growth and three-dimensional (3D) growth. The transition occurs via the gradual formation of a surface ripple as anticipated from instability theory. However, these undulations rapidly develop into crack-like surface instabilities which we simulate and explain by the mechanism of stress-driven surface diffusion. Finally, we model the large stresses associated with these features within a fracture mechanics formalism. This analysis demonstrates that crack-like instabilities provide ideal candidate sites for the nucleation of misfit dislocations

    X-Ray Absorption Studies of Strain in Epitaxial (Si-Ge) Atomic Layer Superlattice and Alloy Films

    Get PDF
    The Si 1s (K-shell) X-ray absorption spectra of a series of strained SixGe100-x alloy thin films and several {(Si)m(Ge)n}p atomic layer superlattices (ALS) grown epitaxially on Si(100) and Ge(100) substrates have been investigated using plane polarized synchrotron radiation. Polarization dependent components of the signal are attributed to anisotropic states associated with strain-induced tetragonal distortions. The sense of the polarization is shown to be identical for all compositions (x = 25 to 92) of SiGe alloys grown on Si(100) substrates. The opposite polarization dependence is found to occur for all SixGe100-x alloys (x = 12 to 50) grown on Ge(100) substrates. The polarization dependence and shape of the near edge spectral features of alloy and ALS samples which have similar (average) chemical composition are remarkably similar. A preliminary comparison of the alloy results with literature band structure calculations is made

    Influence of Annealing on the Interface Structure and Strain Relief in Si/Ge Heterostructures on (100) Si

    Get PDF
    Research work on the general problem of the nature and thermal stability of the Si/Ge semiconductor interface is reviewed. We report on our recent studies of the interface structure in [(Si)m(Ge)n]p superlattices and (Ge)n layers buried in Si as revealed by Raman scattering, extended X-ray absorption fine structure, and X-ray techniques. Strain relaxation and interdiffusion in the superlattices caused by annealing have been investigated, and it is found that considerable strain-enhanced intermixing together with partial relaxation of Ge-Ge bonds occurs even for very short anneal times at 700°C. Further annealing leads to diffusion at a much slower rate and to the eventual formation of an alloy layer. The Ge-Ge bond lengths in as-grown samples are that expected for a fully strained Ge layer. Similar studies of the (Ge)n layers reveal that two-dimensional pseudomorphic growth proceeds up to n = 5, probably mediated by a Si-Ge interface interdiffusion over one or two monolayers of approximately 20%. A n = 12 layer gave evidence of strain relaxation by the introduction of dislocations and clustering. Interdiffusion proceeds rapidly on annealing at 750°C

    Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy

    Get PDF
    The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate
    corecore