2 research outputs found

    Bright and dark excitons in an atom--pair filled optical lattice within a cavity

    Full text link
    We study electronic excitations of a degenerate gas of atoms trapped in pairs in an optical lattice. Local dipole-dipole interactions produce a long lived antisymmetric and a short lived symmetric superposition of individual atomic excitations as the lowest internal on-site excitations. Due to the much larger dipole moment the symmetric states couple efficiently to neighbouring lattice sites and can be well represented by Frenkel excitons, while the antisymmetric dark states stay localized. Within a cavity only symmetric states couple to cavity photons inducing long range interactions to form polaritons. We calculate their dispersion curves as well as cavity transmission and reflection spectra to observe them. For a lattice with aspherical sites bright and dark states get mixed and their relative excitation energies depend on photon polarizations. The system should allow to study new types of solid state phenomena in atom filled optical lattices

    Optical properties of atomic Mott insulators: from slow light to dynamical Casimir effects

    Full text link
    We theoretically study the optical properties of a gas of ultracold, coherently dressed three-level atoms in a Mott insulator phase of an optical lattice. The vacuum state, the band dispersion and the absorption spectrum of the polariton field can be controlled in real time by varying the amplitude and the frequency of the dressing beam. In the weak dressing regime, the system shows unique ultra-slow light propagation properties without absorption. In the presence of a fast time modulation of the dressing amplitude, we predict a significant emission of photon pairs by parametric amplification of the polaritonic zero-point fluctuations. Quantitative considerations on the experimental observability of such a dynamical Casimir effect are presented for the most promising atomic species and level schemes
    corecore