18 research outputs found

    In situ cyanoacrylate glue “thrombus” formation during cardiac de-airing

    Get PDF

    Does preservation of the sub-valvular apparatus during mitral valve replacement affect long-term survival and quality of life? A Microsimulation Study

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Techniques to preserve the sub-valvular apparatus in order to reduce morbidity and mortality following mitral valve replacement have been frequently reported. However, it is uncertain what impact sub-valvular apparatus preservation techniques have on long-term outcomes following mitral valve replacement. This study investigated the effect of sub-valvular apparatus preservation on long-term survival and quality of life following mitral valve replacement. Methods A microsimulation model was used to compare long-term survival and quality-adjusted life years following mitral valve replacement after conventional valve replacement and sub-valvular apparatus preservation. Probabilistic sensitivity analysis and alternative analysis were performed to investigate uncertainty associated with the results. Results Our Analysis suggests that patients survive longer if the sub-valvular apparatus are preserved (65.7% SD 1.5%, compared with 58.1% SD 1.6% at 10 years). The quality adjusted life years gained over a 10 year period where also greater after sub-valvular apparatus preservation. (6.54 QALY SD 0.07 QALY, compared with 5.61 QALY, SD 0.07 QALY). The superiority of preservation techniques was insensitive to patient age, parameter or model uncertainty. Conclusion This study suggests that long-term outcomes may be improved when the sub-valvular apparatus are preserved. Given the lack of empirical data further research is needed to investigate health-related quality of life after mitral valve replacement, and to establish whether outcomes differ between preservation techniques.Published versio

    Interactions between skeletal muscle precursor cells and adult myocardium

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Micro- and Nanoscale Control of the Cardiac Stem Cell Niche for Tissue Fabrication

    No full text
    Advances in stem cell (SC) biology have greatly enhanced our understanding of SC self-renewal and differentiation. Both embryonic and adult SCs can be differentiated into a great variety of tissue cell types, including cardiac myocytes. In vivo studies and clinical trials, however, have demonstrated major limitations in reconstituting the myocardium in failing hearts. These limitations include precise control of SC proliferation, survival and phenotype both prior and subsequent to transplantation and avoidance of serious adverse effects such as tumorigenesis and arrhythmias. Micro- and nanoscale techniques to recreate SC niches, the natural environment for the maintenance and regulation of SCs, have enabled the elucidation of novel SC behaviors and offer great promise in the fabrication of cardiac tissue constructs. The ability to precisely manipulate the interface between biopolymeric scaffolds and SCs at in vivo scale resolutions is unique to micro- and nanoscale approaches and may help overcome limitations of conventional biological scaffolds and methods for cell delivery. We now know that micro- and nanoscale manipulation of scaffold composition, mechanical properties, and three-dimensional architecture have profound influences on SC fate and will likely prove important in developing the next generation of “transplantable SC niches” for regeneration of heart and other tissues. In this review, we examine two key aspects of micro- and nanofabricated SC-based cardiac tissue constructs: the role of scaffold composition and the role of scaffold architecture and detail how recent work in these areas brings us closer to clinical solutions for cardiovascular regeneration
    corecore