17 research outputs found
Serum osteoprotegerin is associated with pulse pressure in kidney transplant recipients
Pulse pressure (PP) reflects increased large artery stiffness, which is caused, in part, by arterial calcification in patients with chronic kidney disease. PP has been shown to predict both cardiovascular and cerebrovascular events in various patient populations, including kidney transplant (KTX) recipients. Osteoprotegerin (OPG) is a marker and regulator of arterial calcification, and it is related to cardiovascular survival in hemodialysis patients. Here we tested the hypothesis that OPG is associated with increased pulse pressure. We cross-sectionally analyzed the association between serum OPG and PP in a prevalent cohort of 969 KTX patients (mean age: 51 +/- 13 years, 57% male, 21% diabetics, mean eGFR 51 +/- 20 ml/min/1.73 m2). Independent associations were tested in a linear regression model adjusted for multiple covariables. PP was positively correlated with serum OPG (rho = 0.284, p < 0.001). Additionally, a positive correlation was seen between PP versus age (r = 0.358, p < 0.001), the Charlson Comorbidity Index (r = 0.232, p < 0.001), serum glucose (r = 0.172, p < 0.001), BMI (r = 0.133, p = 0.001) and serum cholesterol (r = 0.094, p = 0.003). PP was negatively correlated with serum Ca, albumin and eGFR. The association between PP and OPG remained significant after adjusting for multiple potentially relevant covariables (beta = 0.143, p < 0.001). We conclude that serum OPG is independently associated with pulse pressure in kidney transplant recipients
Bone Biomarkers Help Grading Severity of Coronary Calcifications in Non Dialysis Chronic Kidney Disease Patients
BACKGROUND: Osteoprotegerin (OPG) and fibroblast growth factor-23 (FGF23) are recognized as strong risk factors of vascular calcifications in non dialysis chronic kidney disease (ND-CKD) patients. The aim of this study was to investigate the relationships between FGF23, OPG, and coronary artery calcifications (CAC) in this population and to attempt identification of the most powerful biomarker of CAC: FGF23? OPG? METHODOLOGY/PRINCIPAL FINDINGS: 195 ND-CKD patients (112 males/83 females, 70.8 [27.4-94.6] years) were enrolled in this cross-sectional study. All underwent chest multidetector computed tomography for CAC scoring. Vascular risk markers including FGF23 and OPG were measured. Logistic regression analyses were used to study the potential relationships between CAC and these markers. The fully adjusted-univariate analysis clearly showed high OPG (≥10.71 pmol/L) as the only variable significantly associated with moderate CAC ([100-400[) (OR = 2.73 [1.03;7.26]; p = 0.04). Such association failed to persist for CAC scoring higher than 400. Indeed, severe CAC was only associated with high phosphate fractional excretion (FEPO(4)) (≥38.71%) (OR = 5.47 [1.76;17.0]; p = 0.003) and high FGF23 (≥173.30 RU/mL) (OR = 5.40 [1.91;15.3]; p = 0.002). In addition, the risk to present severe CAC when FGF23 level was high was not significantly different when OPG was normal or high. Conversely, the risk to present moderate CAC when OPG level was high was not significantly different when FGF23 was normal or high. CONCLUSIONS: Our results strongly suggest that OPG is associated to moderate CAC while FGF23 rather represents a biomarker of severe CAC in ND-CKD patients
State of the art of immunoassay methods for B-type natriuretic peptides: An update
The aim of this review article is to give an update on the state of the art of the immunoassay
methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides.
Using chromatographic procedures, several studies reported an increasing number of
circulating peptides related to BNP in human plasma of patients with heart failure. These
peptides may have reduced or even no biological activity. Furthermore, other studies have
suggested that, using immunoassays that are considered specific for BNP, the precursor of the
peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of
patients with heart failure. Because BNP immunoassay methods show large (up to 50%)
systematic differences in values, the use of identical decision values for all immunoassay
methods, as suggested by the most recent international guidelines, seems unreasonable. Since
proBNP significantly cross-reacts with all commercial immunoassay methods considered
specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of
glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians
should take into account that there are large systematic differences between methods when
they compare results from different laboratories that use different BNP immunoassays. On the
other hand, clinical laboratories should take part in external quality assessment (EQA) programs
to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors
believe that the development of more specific methods for the active peptide, BNP1–32, should
reduce the systematic differences between methods and result in better harmonization of
results
Impact of Endocrine Disorders on Vasculature
Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) regulate essential vascular functions, including contractility, inflammation, and platelet activity. Endothelial dysfunction represents an early marker of impaired vascular homeostasis as well as a strong predictor of atherosclerosis and future cardiovascular (CV) events. Many hormones interact with ECs and VSMCs, thus playing a key role in vascular homeostasis. On this basis, endocrine disorders may be considered as a paradigm of endocrine control on vascular health. On the one hand, they contribute to understanding the pathophysiological mechanisms underlying vascular dysfunction. Furthermore, the tight control of endocrine pathways on vascular function emphasizes their pleiotropic activity and the interplay between different hormonal axes. Here, we summarize the current knowledge linking endocrine system and vascular health. Direct effects of insulin, thyroid hormones, mineralo- and glucocorticoids, growth hormone/insulinlike growth factor, sexual hormones, and calcium/phosphorus regulating hormones will be analyzed, also considering the complex interplay between those different pathways. Both molecular mechanisms and clinical evidence will be discussed also describing the potential role of different hormones as potential biomarkers of atherosclerosis and risk of adverse cardiovascular events