71 research outputs found
Supernova Bounds on Majoron-emitting decays of light neutrinos
Neutrino masses arising from the spontaneous violation of ungauged
lepton-number are accompanied by a physical Goldstone boson, generically called
Majoron. In the high-density supernova medium the effects of Majoron-emitting
neutrino decays are important even if they are suppressed in vacuo by small
neutrino masses and/or small off-diagonal couplings. We reconsider the
influence of these decays on the neutrino signal of supernovae in the light of
recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that
majoron-neutrino coupling constants in the range 3\times 10^{-7}\lsim g\lsim
2\times 10^{-5} or g \gsim 3 \times 10^{-4} are excluded by the observation
of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury
Neutrino Observatory to detect majoron neutrino interactions in the case of a
future galactic supernova. We find that these experiments could probe majoron
neutrino interactions with improved sensitivity.Comment: 28 pages, 5 figure
Neutral Higgs bosons in the MNMSSM with explicit CP violation
Within the framework of the minimal non-minimal supersymmetric standard model
(MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are
investigated at the one-loop level, where the radiative corrections from the
loops of the quark and squarks of the third generation are taken into account.
Assuming that the squark masses are not degenerate, the radiative corrections
due to the stop and sbottom quarks give rise to CP phases, which trigger the CP
violation explicitly in the Higgs sector of the MNMSSM. The masses, the
branching ratios for dominant decay channels, and the total decay widths of the
five neutral Higgs bosons in the MNMSSM are calculated in the presence of the
explicit CP violation. The dependence of these quantities on the CP phases is
quite recognizable, for given parameter values.Comment: 25 pages, 8 figure
Annihilation-Type Charmless Radiative Decays of B Meson in Non-universal Z^\prime Model
We study charmless pure annihilation type radiative B decays within the QCD
factorization approach. After adding the vertex corrections to the naive
factorization approach, we find that the branching ratios of
, and
within the standard model are at the order of
, and ,
respectively. The smallness of these decays in the standard model makes them
sensitive probes of flavor physics beyond the standard model. To explore their
physics potential, we have estimated the contribution of boson in
the decays. Within the allowed parameter space, the branching ratios of these
decay modes can be enhanced remarkably in the non-universal model:
The branching ratios can reach to for and for the , which are large enough for LHC-b and/or Super B-factories to detect
those channels in near future. Moreover, we also predict large CP asymmetries
in suitable parameter space. The observation of these modes could in turn help
us to constrain the mass within the model.Comment: 13 pages, 8 figure
Can lepton flavor violating interactions explain the LSND results?
If the atmospheric and the solar neutrino problem are both explained by
neutrino oscillations, and if there are only three light neutrinos, then all
mass-squared differences between the neutrinos are known. In such a case,
existing terrestrial neutrino oscillation experiments cannot be significantly
affected by neutrino oscillations, but, in principle there could be an anomaly
in the neutrino flux due to new neutrino interactions. We discuss how a
non-standard muon decay would modify the
neutrino production processes of these experiments. Since violation
is small for New Physics above the weak scale one can use related
flavor-violating charged lepton processes to constrain these decays in a model
independent way. We show that the upper bounds on ,
muonium-antimuonium conversion and rule out any observable
effect for the present experiments due to
for , respectively. Applying similar arguments to
flavor-changing semi-leptonic reactions we exclude the possibility that the
"oscillation signals" observed at LSND are due to flavor-changing interactions
that conserve total lepton number.Comment: 21 pages, 6 figures, Latex; minor correction
Backward pion-nucleon scattering
A global analysis of the world data on differential cross sections and
polarization asymmetries of backward pion-nucleon scattering for invariant
collision energies above 3 GeV is performed in a Regge model. Including the
, , and trajectories, we
reproduce both angular distributions and polarization data for small values of
the Mandelstam variable , in contrast to previous analyses. The model
amplitude is used to obtain evidence for baryon resonances with mass below 3
GeV. Our analysis suggests a resonance with a mass of 2.83 GeV as
member of the trajectory from the corresponding Chew-Frautschi
plot.Comment: 12 pages, 16 figure
Violation of the Equivalence Principle in the light of the SNO and SK solar neutrino results
The SNO result on charged current deuteron disintegration, the
SuperKamiokande 1258-day data on electron scattering, and other solar neutrino
results are used to revisit the model of neutrino oscillations driven by a
violation of the equivalence principle. We use a chisq minimization technique
to examine oscillation between the nu(e) and another active neutrino, both
massless, and find that within the Standard Solar Model the fit to the SNO and
SuperKamiokande spectra are moderately good while a very good fit is obtained
when the absolute normalizations of the 8B and hep neutrino fluxes are allowed
to vary. The best fit prefers large, but not maximal, mixing, essentially no
hep neutrinos, and a 40% reduction in the 8B neutrino flux. The fit to the
total rates from the different experiments is not encouraging but when the
rates and spectra are considerd together the situation is much improved. We
remark on the expectations of the VEP model for the neutral current
measurements at SNO.Comment: Latex, 11 pages (incl. 1 postscript figure
A New Parametrization of the Seesaw Mechanism and Applications in Supersymmetric Models
We present a new parametrization of the minimal seesaw model, expressing the
heavy-singlet neutrino Dirac Yukawa couplings and Majorana
masses in terms of effective light-neutrino observables and an
auxiliary Hermitian matrix In the minimal supersymmetric version of the
seesaw model, the latter can be related directly to other low-energy
observables, including processes that violate charged lepton flavour and CP.
This parametrization enables one to respect the stringent constraints on
muon-number violation while studying the possible ranges for other observables
by scanning over the allowed parameter space of the model. Conversely, if any
of the lepton-flavour-violating process is observed, this measurement can be
used directly to constrain and As applications, we
study flavour-violating decays and the electric dipole moments of
leptons in the minimal supersymmetric seesaw model.Comment: Important references adde
Atmospheric Neutrino Oscillations and New Physics
We study the robustness of the determination of the neutrino masses and
mixing from the analysis of atmospheric and K2K data under the presence of
different forms of phenomenologically allowed new physics in the nu_mu--nu_tau
sector. We focus on vector and tensor-like new physics interactions which allow
us to treat, in a model independent way, effects due to the violation of the
equivalence principle, violations of the Lorentz invariance both CPT conserving
and CPT violating, non-universal couplings to a torsion field and non-standard
neutrino interactions with matter. We perform a global analysis of the full
atmospheric data from SKI together with long baseline K2K data in the presence
of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together
with sub-dominant effects due to these forms of new physics. We show that
within the present degree of experimental precision, the extracted values of
masses and mixing are robust under those effects and we derive the upper bounds
on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include
Black Holes and Instabilities of Negative Tension Branes
We consider the collision in 2+1 dimensions of a black hole and a negative
tension brane on an orbifold. Because there is no gravitational radiation in
2+1 dimensions, the horizon area shrinks when part of the brane falls through.
This provides a potential violation of the generalized second law of
thermodynamics. However, tracing the details of the dynamical evolution one
finds that it does not proceed from equilibrium configuration to equilibrium
configuration. Instead, a catastrophic space-time singularity develops similar
to the `big crunch' of FRW space-times. In the context of classical
general relativity, our result demonstrates a new instability of constructions
with negative tension branes.Comment: 18 pages, 3 figures, uses RevTeX. Minor typos fixed. References and
one footnote adde
Current cosmological bounds on neutrino masses and relativistic relics
We combine the most recent observations of large-scale structure (2dF and
SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put
constraints on flat cosmological models where the number of massive neutrinos
and of massless relativistic relics are both left arbitrary. We discuss the
impact of each dataset and of various priors on our bounds. For the standard
case of three thermalized neutrinos, we find an upper bound on the total
neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS
data (resp. including priors from supernovae data and the HST Key Project), a
bound that is quite insensitive to the splitting of the total mass between the
three species. When the total number of neutrinos or relativistic relics N_eff
is left free, the upper bound on sum m_nu (at 2sigma, including all priors)
ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an
explanation of the parameter degeneracy that allows larger values of the masses
when N_eff increases. Finally, we show that the limit on the total neutrino
mass is not significantly modified in the presence of primordial gravitational
waves, because current data provide a clear distinction between the
corresponding effects.Comment: 13 pages, 6 figure
- …