820 research outputs found
Role of Quantum Coherence and Energetic Disorder on Exciton Transport in Polymer Films
The cross-over from coherent to incoherent exciton transport in disordered
polymer films is studied by computationally solving a modified form of the
Redfield equation for the exciton density matrix. This theory models quantum
mechanical (ballistic) and incoherent (diffusive) transport as limiting cases.
It also reproduces Forster transport for certain parameter regimes. Using model
parameters appropriate to polymer thin films it is shown that short-time
quantum mechanical coherence increases the exciton diffusion length. It also
causes rapid initial energy relaxation and larger line widths. The route to
equilibrium is, however, more questionable, as the equilibrium populations of
the model do not satisfy the Boltzmann distributions over the site energies.
The Redfield equation for the dimer is solved exactly to provide insight into
the numerical results.Comment: Accepted for publication in Phys. Rev. B. (July 2006). 19 pages and 8
figure
Density matrix renormalization group study of conjugated polymers with transverse pi-conjugation
We report accurate numerical studies of excited state orderings in long
hypothetical pi-conjugated oligomers in which the hydrogen atoms of
trans-polyacetylene are replaced with conjugated sidegroups, within modified
Hubbard models. There exists a range of the bare Coulomb repulsion for which
the excited state ordering is conducive to photoluminescence in the substituted
systems, even as this ordering is opposite in the unsubstituted polyenes of the
same lengths. Our work provides motivation to study real pi-conjugated polymers
with transverse conjugation and small optical gaps.Comment: 5 pages, 4 fig
Renormalization of NN-Scattering with One Pion Exchange and Boundary Conditions
A non perturbative renormalization scheme for Nucleon-Nucleon interaction
based on boundary conditions at short distances is presented and applied to the
One Pion Exchange Potential. It is free of off-shell ambiguities and
ultraviolet divergences, provides finite results at any step of the calculation
and allows to remove the short distance cut-off in a suitable way. Low energy
constants and their non-perturbative evolution can directly be obtained from
experimental threshold parameters in a completely unique and model independent
way when the long range explicit pion effects are eliminated. This allows to
compute scattering phase shifts which are, by construction consistent with the
effective range expansion to a given order in the C.M. momentum . In the
singlet and triplet channels ultraviolet fixed points
and limit cycles are obtained respectively for the threshold parameters. Data
are described satisfactorily up to CM momenta of about .Comment: 22 pages, 10 figures, revte
Effective theories of scattering with an attractive inverse-square potential and the three-body problem
A distorted-wave version of the renormalisation group is applied to
scattering by an inverse-square potential and to three-body systems. In
attractive three-body systems, the short-distance wave function satisfies a
Schroedinger equation with an attractive inverse-square potential, as shown by
Efimov. The resulting oscillatory behaviour controls the renormalisation of the
three-body interactions, with the renormalisation-group flow tending to a limit
cycle as the cut-off is lowered. The approach used here leads to single-valued
potentials with discontinuities as the bound states are cut off. The
perturbations around the cycle start with a marginal term whose effect is
simply to change the phase of the short-distance oscillations, or the
self-adjoint extension of the singular Hamiltonian. The full power counting in
terms of the energy and two-body scattering length is constructed for
short-range three-body forces.Comment: 19 pages (RevTeX), 2 figure
Large scale numerical investigation of excited states in poly(phenylene)
A density matrix renormalisation group scheme is developed, allowing for the
first time essentially exact numerical solutions for the important excited
states of a realistic semi-empirical model for oligo-phenylenes. By monitoring
the evolution of the energies with chain length and comparing them to the
experimental absorption peaks of oligomers and thin films, we assign the four
characteristic absorption peaks of phenyl-based polymers. We also determine the
position and nature of the nonlinear optical states in this model.Comment: RevTeX, 10 pages, 4 eps figures included using eps
Long-Range Excitons in Optical Absorption Spectra of Electroluminescent Polymer Poly(para-phenylenevinylene)
The component of photoexcited states with large spatial extent is
investigated for poly(para-phenylenevinylene) using the intermediate exciton
theory. We find a peak due to long-range excitons at the higher-energy side of
the lowest main feature of optical spectra. The fact that the onset of
long-range excitons is located near the energy gap is related to the mechanisms
of large photocurrents measured in such energy regions. We show that a large
value of the hopping integral is realistic for characterizing optical
excitations.Comment: To be published in J. Phys. Soc. Jpn. (Letters
The low-lying excitations of polydiacetylene
The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the
nature of the low-lying vertical transition energies of polydiacetylene. The
model is solved using the density matrix renormalisation group method for a
fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical
properties of polydiacetylene are considered, which are determined by the
third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are
used as the geometric model for the calculation. For short chains, the
calculated E(1Bu) agrees with the experimental value, within solvation effects
(ca. 0.3 eV). The charge gap is used to characterise bound and unbound states.
The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and
mAg are not and hence are bound excitons. For large chain lengths, the nBu
tends towards the charge gap as expected, strongly suggesting that the nBu is
the conduction band edge. The conduction band edge for PDA is agreed in the
literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of
the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with
an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the
1Bu, which does not agree with relaxed transition experimental data. However,
this could be resolved by including explicit lattice relaxation in the Pariser-
Parr-Pople-Peierls model. Particle-hole separation data further suggest that
the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound
exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure
Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C).
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes
A benzene interference single-electron transistor
Interference effects strongly affect the transport characteristics of a
benzene single-electron transistor (SET) and for this reason we call it
interference SET (I-SET). We focus on the effects of degeneracies between
many-body states of the isolated benzene. We show that the particular current
blocking and selective conductance suppression occurring in the benzene I-SET
are due to interference effects between the orbitally degenerate states.
Further we study the impact of reduced symmetry due to anchor groups or
potential drop over the molecule. We identify in the quasi-degeneracy of the
involved molecular states the necessary condition for the robustness of the
results.Comment: 17pages, 9 figures, revised versio
Molecular basis of APC/C regulation by the spindle assembly checkpoint.
In the dividing eukaryotic cell, the spindle assembly checkpoint (SAC) ensures that each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex (APC/C), the E3 ubiquitin ligase responsible for initiating chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), which inhibits the APC/C and delays chromosome segregation. By cryo-electron microscopy, here we determine the near-atomic resolution structure of a human APC/CâMCC complex (APC/C(MCC)). Degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit responsible for substrate interactions. BubR1 also obstructs binding of the initiating E2 enzyme UbcH10 to repress APC/C ubiquitination activity. Conformational variability of the complex enables UbcH10 association, and structural analysis shows how the Cdc20 subunit intrinsic to the MCC (Cdc20(MCC)) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced
- âŠ