33 research outputs found
Failure of brittle heterogeneous materials: intermittency or continuum regime
The problem of the solid fracture has occupied scientists and engineers for centuries. This phenomenon is classically addressed within the framework of continuum mechanics. Still, stress enhancement at crack tips makes the failure behavior observed at the continuum-level scale extremely dependent on the presence of microstructure inhomogeneities down to very small scales. This yields statistical aspects which, by essence, cannot be addressed using the conventional engineering continuum approaches. We addressed the problem numerically. The simulations invoke a recent statistical model mapping heterogeneous fracture with the depinning transition of an elastic manifold in a random potential. The numerical exploration of the parameter space (i.e., which loading conditions, microstructure material parameters, material constants and so on) allowed us to unravel when regular dynamics compatible with continuum approaches are expected to be observed and when crackling dynamics calling for statistical approaches are observed. In this latter case, we have characterized quantitatively the dynamics statistic and its variations as a function of the input parameters
Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scaling
To unravel how the microstructure affects the fracture surface roughness in
heterogeneous brittle solids like rocks or ceramics, we characterized the
roughness statistics of post-mortem fracture surfaces in home-made materials of
adjustable microstructure length-scale and porosity, obtained by sintering
monodisperse polystyrene beads. Beyond the characteristic size of disorder, the
roughness profiles are found to exhibit self-affine scaling features evolving
with porosity. Starting from a null value and increasing the porosity, we
quantitatively modify the self-affine scaling properties from anisotropic (at
low porosity) to isotropic (for porosity larger than 10 %).Comment: 10 pages, 10 figures, Physical Review E in Jan 2015, Vol. 91 Issue
Failure of brittle heterogeneous materials: intermittency, crackling, and seismicity
The problem of the solid fracture is classically addressed within the framework of continuum mechanics. Still, stress enhancement at crack tips makes the failure behavior observed at the continuum-level scale extremely dependent on the presence of microstructural inhomogeneities. This yields statistical aspects which, by essence, cannot be addressed using the conventional engineering continuum approaches. We designed an experimental setup that allows growing well-controlled tensile cracks in brittle heterogeneous solids of tunable microstructure, over a wide range of loading speed. The crack dynamics and the evolution of stored and released mechanical energy are monitored in real time. In parallel, the acoustic emission is recorded via a series of acoustic transducers and analyzed in a way similar to that develop by geophysicists to process seismic signals. These experiments allowed us to characterize quantitatively the crackling dynamics of cracks, also to evidence intriguing statistical similarities between the seismicity associated with this simple situation (single crack under tension) and the much more complex situation of multicracking in compressive fracture and in earthquakes
Imaging forces in a three-dimensional granular material
We experimentally study the quasi-static deformation of a three-dimensional sphere packings subjected to macroscopic deformation. We perform these experiments on slightly polydisperse and nearly frictionless soft hydrogel spheres in a modified triaxial shear apparatus. We resolve the microscopic force and displacement network in a three-dimensional packing through imaging the entire packing at different loading steps. By resolving particle deformations via custom written image analysis software, we extract all particle contacts and contact forces with a very good accuracy. In addition, we measure boundary stresses during compression and shear. We address the non-linear force response of a disordered packing under compression and shear, force network dynamics, and explore the plastic rearrangements inside cyclically sheared and compressed packings
Plot-level satellite imagery can substitute for UAVs in assessing maize phenotypes across multistate field trials.
Accurate genotype-specific early yield estimates at fields and plots offer potential benefits to farmers in optimizing their agronomic practices, breeders in screening thousands of varieties, and policymakers in decision-making contributing to the improvement of agriculture and food production systems. Effective approaches to track plant growth and predict yield require large datasets of remote sensing and ground truth data collected across multiple environments. Low-altitude drone flights are increasingly being used to collect data from field evaluations of new crop varieties, while satellite imagery is being explored to track yield and management practices at the regional scales. Despite their lower spatial resolution, satellite platforms exhibit logistical and technical advantages in scalability and accessibility, and could facilitate plot-level predictions, especially with steadily improving spatial resolution. However, genotype-specific, plot-level, high-resolution satellite images from multiple environments with ground truth measurements are not yet publicly available. Here we generated, described, and evaluated over 20,000 plot-level images of over 80 hybrid maize varieties grown across the US corn belt under various management practices collected from (near simultaneous) satellite and drone flights integrated with ground truth yield measurement. Of the six baseline models examined, models employing data collected from satellite images often matched or exceeded the performance of models employing drone images for both within and cross-environment yield prediction. Large, multi-environment, genetically diverse datasets such as those generated in this study, along with more complex models could help unlock the power of satellite imagery as an important addition to the tool of farmers, plant geneticists, breeders, and policymakers.This is a preprint from Shrestha, Nikee, Anirudha Powadi, Jensina Davis, Timilehin T. Ayanlade, Hu-yu Liu, Michael C. Tross, Ramesh K. Mathivanan et al. "Plot-level satellite imagery can substitute for UAVs in assessing maize phenotypes across multistate field trials." agriRxiv 2024 (2024): 20240201322. doi: https://doi.org/10.31220/agriRxiv.2024.00251. Copyright 2024, The Authors
A global biodiversity observing system to unite monitoring and guide action
The rate and extent of global biodiversity change is surpassing our ability to measure, monitor and forecast trends. We propose an interconnected worldwide system of observation networks â a global biodiversity observing system (GBiOS) â to coordinate monitoring worldwide and inform action to reach international biodiversity targets.acceptedVersio
Soil pH mediates the balance between stochastic and deterministic assembly of bacteria
Little is known about the factors affecting the relative influences of stochastic and deterministic processes that govern the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soil datasets distributed across different regions. Different relationships between pH and successional age across these datasets allowed us to separate the influences of successional age (i.e., time) from soil pH. We found that extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditions close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age
TRY plant trait database â enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
TRY plant trait database â enhanced coverage and open access
Plant traitsâthe morphological, anatomical, physiological, biochemical and phenological characteristics of plantsâdetermine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traitsâalmost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus KjĂžller, Tamir Klein, Michael Kleyer, Jitka KlimeĆĄovĂĄ, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf KĂŒhn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan LlusiĂ , Madelon Lohbeck, Ălvaro LĂłpez-GarcĂa, Gabriela Lopez-Gonzalez, ZdeĆka LososovĂĄ, FrĂ©dĂ©rique Louault, BalĂĄzs A. LukĂĄcs, Petr LukeĆĄ, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki MĂ€kelĂ€, Harri MĂ€kinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina MartĂnez-Garza, Jordi MartĂnez-Vilalta, Tereza MaĆĄkovĂĄ, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, CĂ©line Meredieu, Julie Messier, Ilona MĂ©szĂĄros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila MolnĂĄr V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka MoravcovĂĄ, Alvaro Moreno-MartĂnez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina MĂŒller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ălo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Ăllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis PĂ€rtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, ValĂ©rio D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr PyĆĄek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime RĂ©jou-MĂ©chain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja RĂŒger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-GarcĂa, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun SiebenkĂ€s, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, GrĂ©gory Sonnier, Mia Vedel SĂžrensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana SvitkovĂĄ, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, RubĂ©n Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, LubomĂr TichĂœ, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, PĂ©ter Török, Tonantzin Tarin, JosĂ© M. Torres-Ruiz, BĂ©la TĂłthmĂ©rĂ©sz, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim AndrĂ© Vanselow, Angelica VĂ„rhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime VillacĂs, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, KĂĄtia Janaina Zanini, Amy E. Zanne, David ZelenĂœ, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia ZiemiĆska, Chad R. Zirbel, Georg Zizka, IriĂ© Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry;
Max Planck Society;
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig;
International Programme of Biodiversity Science (DIVERSITAS);
International Geosphere-Biosphere Programme (IGBP);
Future Earth;
French Foundation for Biodiversity Research (FRB);
GIS âClimat, Environnement et SociĂ©tĂ©'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc
Fracture des matériaux hétérogÚnes fragiles, Intermittence, Crackling et Sismicité
PrĂ©voir oĂč, quand et comment les matĂ©riaux cassent est une problĂ©matique qui occupe scientifiques et ingĂ©nieurs depuis des siĂšcles. Ce problĂšme est rendu complexe par le fait que la concentration des contraintes en pointe de fissure lie intimement le comportement observĂ© Ă l'Ă©chelle macroscopique aux inhomogĂ©nĂ©itĂ©s de microstructure Ă des Ă©chelles trĂšs fines. Ceci induit une dynamique de fissuration erratique, composĂ©e d'Ă©vĂ©nements d'endommagement rapides et imprĂ©visibles sĂ©parĂ©s de pĂ©riodes calmes (e.g. dynamique des tremblements de terre le long des failles). Par essence, ces aspects statistiques ne peuvent pas ĂȘtre traitĂ©s avec l'approche de la mĂ©canique des milieux continus traditionnels. Dans un premier temps, nous tentons d'apprĂ©hender ce problĂšme au travers d'une expĂ©rience modĂšle qui consiste Ă faire propager une fissure dans une roche artificielle dont nous contrĂŽlons la microstructure. La vitesse de chargement du systĂšme de fracture est rĂ©glable sur une large gamme de valeurs. La vitesse de fissuration et l'Ă©nergie mĂ©canique sont enregistrĂ©es en temps rĂ©el. En parallĂšle, l'Ă©mission acoustique associĂ©e aux Ă©vĂ©nements de fracture ainsi que leur localisation sont mesurĂ©es via des capteurs piĂ©zoĂ©lectriques, puis analysĂ©es comme cela est communĂ©ment fait en sismologie. Ces expĂ©riences nous permettent de caractĂ©riser quantitativement la dynamique intermittente de la fissuration. Elles montrent qu'un certain nombre des lois empiriques observĂ©es en gĂ©ophysique sur la sismicitĂ© (loi de Richter-Gutenberg, d'Omori, de Voight, d'Utsu...) se retrouvent dans notre systĂšme modĂšle. Dans un deuxiĂšme temps, nous adressons ce problĂšme thĂ©oriquement et numĂ©riquement, en identifiant le phĂ©nomĂšne de fracture dans les matĂ©riaux hĂ©tĂ©rogĂšnes avec celui de la propagation d'une ligne Ă©lastique sur un potentiel alĂ©atoire 2D. Ceci permet de dĂ©terminer quantitativement, en termes de vitesse de chargement, de tailles des hĂ©tĂ©rogĂ©nĂ©itĂ©s, de propriĂ©tĂ©s du matĂ©riau, et de gĂ©omĂ©trie de structure, quand la dynamique de fissuration est rĂ©guliĂšre et compatible avec l'approche ingĂ©nieur des milieux continus, et quand elle devient erratique et nĂ©cessite une approche statistique. Dans ce dernier cas, nous caractĂ©risons la statistique de de cette dynamique et relions celle-ci aux paramĂštres de l'expĂ©rience.The problem of the solid fracture has occupied scientists and engineers for centuries. This phenomenon is classically addressed within the framework of continuum mechanics. Still, stress enhancement at crack tips makes the failure behavior observed at the continuum-level scale extremely dependent on the presence of microstructure inhomogeneities down to very small scales. This yields statistical aspects which, by essence, cannot be addressed using the conventional engineering continuum approaches. I addressed this problem from two different points. First, I designed an experimental setup that allows growing well-controlled tensile cracks in brittle heterogeneous solids of tunable microstructure, over a wide range of loading speed. The crack dynamics and the evolution of stored and released mechanical energy are monitored in real time. In parallel, the acoustic emission going along with crack growth is recorded via a series of acoustic transducers, and analyzed in a way similar to that develop by geophysicists to process seismic signals. The experiments allowed me to characterize quantitatively the crackling dynamics of cracks, also to evidence intriguing statistical similarities between the seismicity associated with this simple situation of a single running crack under tension and the much more complex situation of multicracking in compressive fracture and in earthquakes. In parallel, I addressed the problem numerically. The simulations invoke a recent statistical modelmapping heterogeneous fracture with the depinning transition of an elastic manifold in a random potential. The numerical exploration of the parameter space allowed me to unravel when (i.e. which loading conditions, microstructure material parameters, material constants...) regular dynamics compatible with continuum approaches are expected to be observed, and when crackling dynamics calling for statistical approaches are observed. In this latter case, we have characterized quantitatively the dynamics statistic and its variations as a function of the input parameters.PALAISEAU-Polytechnique (914772301) / SudocSudocFranceF