14 research outputs found

    Nonlinear effects in E(b1+b2)\otimes(b_1+b_2) Jahn-Teller model: Variational approach with excited phonon states and mode correlations

    Full text link
    Interplay of nonlinear and quantum effects in the ground state of the E(b1+b2)\otimes (b_1+b_2) Jahn-Teller model was investigated by the {\it variational approach and exact numerical simulations}. They result in the recognition of (i) importance of the admixture of {\it the first excited state of the displaced harmonic oscillator} of the symmetric phonon mode in the ground state of the system in the selftrapping-dominated regime; (ii) existence of {\it the region of localized b1b_1-undisplaced oscillator states} in the tunneling-dominated regime. The effect (i) occurs owing to significant decrease of the ground state energy on account of the overlapping contribution of the symmetric phonon mode between the states of the same parity. This contribution considerably improves variational results especially in the selftrapping-dominated regime. Close to the E\otimese limit, the nonlinear effects of {\it two-mode correlations} turn to be effective due to the rotational symmetry of this case. In the tunneling-dominated regime the phonon wave functions behave like the strongly localized harmonic oscillator ground state and the effect (i) looses its significance.Comment: 28 pages,6 figure

    Spatial Structure of Spin Polarons in the t-J Model

    Full text link
    The deformation of the quantum Neel state induced by a spin polaron is analyzed in a slave fermion approach. Our method is based on the selfconsistent Born approximation for Green's and the wave function for the quasiparticle. The results of various spin-correlation functions relative to the position of the moving hole are discussed and shown to agree with those available from small cluster calculations. Antiferromagnetic correlations in the direct neighborhood of the hole are reduced, but they remain antiferromagnetic even for J as small as 0.1 t. These correlation functions exhibit dipolar distortions in the spin structure, which sensitively depend on the momentum of the quasiparticle. Their asymptotic decay with the distance from the hole is governed by power laws, yet the spectral weight of the quasiparticles does not vanish.Comment: 12 pages, 2 postscipt files with figures; uses REVTeX, to be published in Phys. Rev. B, Feb. 199

    Spin-wave theory and Marshall's theorems.

    No full text

    A self-consistent analytic treatment of two holes in the

    No full text
    The behavior of two holes in the t-J model is analyzed on the infinite square lattice by an extension of the self-consistent Born approximation, which has proved to be very accurate in the single-hole problem. The main ingredient of our theory is the exact form of the eigenstates. Our results agree well with those of previous numerical studies of the problem. The d-wave bound state is found to have the lowest energy with a critical value J/tc0.4J/t|_{\rm c}\approx 0.4, and there is no indication for a crossover between the d-wave and the p-wave bound states
    corecore