4 research outputs found

    Genetic diversity in L1 ORF of human papillomavirus in women with cervical cancer with and without human immunodeficiency virus in Botswana and Kenya

    Get PDF
    Background: The variation of human papillomavirus (HPV) genotypes shapes the risks of cervical cancer and these variations are not well defined in Africa. Nucleotide changes within the L1 gene, nucleotide variability, and phylogeny were explored in relation to HIV in samples from Botswana and Kenya. Methods: A total of 98 HPV-positive cervical samples were sequenced to identify diferent HPV variants. Phylogenetic inferences were used to determine HPV genotypes and investigate the clustering of sequences between women living with HIV (WLWHIV) and -women not living with HIV (WNLWHIV). Results: Out of 98 generated sequences, 83.7% (82/98) participants had high-risk (HR) HPV genotypes while 16.3% (16/98) had low-risk (LR) HPV genotypes. Among participants with HR-HPV genotypes, 47.6% (39/82) were coinfected with HIV. The prevalence of HR-HPV genotypes was statistically higher in the Botswana population compared to Kenya (p-valu

    Genetic diversity in L1 ORF of human papillomavirus in women with cervical cancer with and without human immunodeficiency virus in Botswana and Kenya

    Get PDF
    Background The variation of human papillomavirus (HPV) genotypes shapes the risks of cervical cancer and these variations are not well defined in Africa. Nucleotide changes within the L1 gene, nucleotide variability, and phylogeny were explored in relation to HIV in samples from Botswana and Kenya. Methods A total of 98 HPV-positive cervical samples were sequenced to identify different HPV variants. Phylogenetic inferences were used to determine HPV genotypes and investigate the clustering of sequences between women living with HIV (WLWHIV) and -women not living with HIV (WNLWHIV). Results Out of 98 generated sequences, 83.7% (82/98) participants had high-risk (HR) HPV genotypes while 16.3% (16/98) had low-risk (LR) HPV genotypes. Among participants with HR-HPV genotypes, 47.6% (39/82) were coinfected with HIV. The prevalence of HR-HPV genotypes was statistically higher in the Botswana population compared to Kenya (p-value < 0.001). Multiple amino acid mutations were identified in both countries. Genetic diversity differed considerably among WLWHIV and WNLWHIV. The mean pairwise distances between HPV-16 between HIV and HIV/HPV as well as for HPV-18 were statistically significant. Six (6) new deleterious mutations were identified in the HPV genotypes based on the sequencing of the L1 region, HPV-16 (L441P, S343P), HPV-18 (S424P), HPV-45 (Q366H, Y365F), and HPV-84 (F458L). The majority of the patients with these mutations were co-infected with HIV. Conclusions Genomic diversity and different genomic variants of HPV sequences were demonstrated. Candidate novel mutations within the L1 gene were identified in both countries which can be further investigated using functional assays

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Doravirine-associated resistance mutations in antiretroviral therapy naïve and experienced adults with HIV-1 subtype C infection in Botswana

    No full text
    ABSTRACT: Objectives: There are limited data on the prevalence of doravirine (DOR)-associated drug resistance mutations in people with HIV (PWH) in Botswana. This cross-sectional, retrospective study aimed to explore the prevalence of DOR-associated resistance mutations among ART-naïve and -experienced PWH in Botswana enrolled in the population-based Botswana Combination Prevention Project (BCPP). Methods: A total of 6078 HIV-1C pol sequences were analysed for DOR-associated resistance mutations using the Stanford HIV drug resistance database, and their levels were predicted according to the Stanford DRM penalty scores and resistance interpretation. Virologic failure was defined as HIV-1 RNA load (VL) >400 copies/mL. Results: Among 6078 PWH, 5999 (99%) had known ART status, and 4529/5999 (79%) were on ART at time of sampling. The suppression rate among ART-experienced was 4517/4729 (96%). The overall prevalence of any DOR-associated resistance mutations was 181/1473 (12.3% [95% confidence interval {CI}: 10.7–14.1]); by ART status: 42/212 (19.8% [95% CI: 14.7–25.4]) among ART-failing individuals (VL ≥400 copies/mL) and 139/1261 (11.0% [95% CI: 9.3–12.9]) among ART-naïve individuals (P < 0.01). Intermediate DOR-associated resistance mutations were observed in 106/1261 (7.8% [95% CI: 6.9–10.1]) in ART-naïve individuals and 29/212 (13.7% [95% CI: 9.4–8.5]) among ART-experienced participants (P < 0.01). High-level DOR-associated resistance mutations were observed in 33/1261 (2.6% [95% CI: 1.8–3.7]) among ART-naïve and 13/212 (6.1% [95% CI: 3.6–10.8]) among ART-failing PWH (P < 0.01). PWH failing ART with at least one EFV/NVP-associated resistance mutation had high prevalence 13/67 (19.4%) of high-level DOR-associated resistance mutations. Conclusion: DOR-associated mutations were rare (11.0%) among ART-naive PWH but present in 62.7% of Botswana individuals who failed NNRTI-based ART with at least one EFV/NVP-associated resistance mutation. Testing for HIV drug resistance should underpin the use of DOR in PWH who have taken first-generation NNRTIs
    corecore