30 research outputs found
Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells
<p>Abstract</p> <p>Background</p> <p>Many cancer cells produce interleukin-6 (IL-6), a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of <it>IL-6 </it>modulators, i.e. IL-1β, prostaglandin E<sub>2</sub>, 17β-estradiol, and 1,25-dihydroxyvitamin D<sub>3</sub>, on expression and synthesis of the cytokine at different stages of tumour progression.</p> <p>Methods</p> <p>We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the <it>IL-6 </it>gene promoter.</p> <p>Results</p> <p><it>IL-6 </it>mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml) to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10<sup>-7 </sup>M) reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the <it>IL-6 </it>promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the <it>IL-6 </it>gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-<it>myc </it>proto-oncogene expression. These effects were inhibited by 10<sup>-8 </sup>M 1,25-dihydroxyvitamin D<sub>3</sub>.</p> <p>Conclusion</p> <p>In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally affected, if at all, by PGE<sub>2</sub>, 1,25-dihydroxyvitamin D<sub>3</sub>, and 17β-estradiol. However, IL-6 is highly abundant in undifferentiated tumour cells and is effectively stimulated by IL-1β. In case of overexpression of an <it>IL-6 </it>gene variant with extreme sensitivity to IL-1β, massive release of the cytokine from undifferentiated tumour cells may accelerate progression towards malignancy by paracrine action on more differentiated tumour cells with a still functioning proliferative IL-6 signalling pathway.</p
Recommended from our members
Atomic Energy Commission Report AECD-3877
"This report covers mainly the work completed since the last interim report, HNL Log No. 0-4714. This report includes results from studies of the rare earth distribution in bismuth-uranium and fused chloride and studies of fused chloride behavior.
Separations Chemistry Quarterly Progress Report for October-December 1953
Work has continued on high temperature methods for processing irradiated U fuel. Additional results have been obtained with fused halide treatment, solid scavengers, and direct Pu distillation. With fused fluorides about 95% of the Pu was removed from a U sample,whiletreatment of U with HCl gas removed almost all the Pu and many fission products. Treatment of molten U with UO/sub 2/ removed a substantial fraction of the fission products without removing Fu. Uranium carbide treatment results were similar to the oxide but not as effective. A small scale distillation of Pu from U showed that Raoult's law is obeyed. (auth
S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration
Chemotaxis of bacteria requires regulated methylation of chemoreceptors. However, despite considerable effort in the 1980s, transmethylation has never been established as a component of eukaryotic cell chemotaxis. S-adenosylhomocysteine (SAH), the product formed when the methyl group of the universal donor S-adenosylmethionine (SAM) is transferred to an acceptor molecule, is a potent inhibitor of all transmethylation reactions. In eukaryotic cells, this inhibition is relieved by hydrolysis of SAH to adenosine and homocysteine catalyzed by SAH hydrolase (SAHH). We now report that SAHH, which is diffuse in the cytoplasm of nonmotile Dictyostelium amoebae and human neutrophils, concentrates with F-actin in pseudopods at the front of motile, chemotaxing cells, but is not present in filopodia or at the very leading edge. Tubercidin, an inhibitor of SAHH, inhibits both chemotaxis and chemotaxis-dependent cell streaming of Dictyostelium, and chemotaxis of neutrophils at concentrations that have little effect on cell viability. Tubercidin does not inhibit starvation-induced expression of the cAMP receptor, cAR1, or G protein-mediated stimulation of adenylyl cyclase activity and actin polymerization in Dictyostelium. Tubercidin has no effect on either capping of Con A receptors or phagocytosis in Dictyostelium. These results add SAHH to the list of proteins that redistribute in response to chemotactic signals in Dictyostelium and neutrophils and strongly suggest a role for transmethylation in chemotaxis of eukaryotic cells