905 research outputs found
Engineered Pathways for Correct Disulfide Bond Oxidation
Correct formation of disulfide bonds is critical for protein folding. We find that cells lacking protein disulfide isomerases (PDIs) can use alternative mechanisms for correct disulfide bond formation. By linking correct disulfide bond formation to antibiotic resistance, we selected mutants that catalyze correct disulfide formation in the absence of DsbC, Escherichia coli's PDI. Most of our mutants massively overproduce the disulfide oxidase DsbA and change its redox status. They enhance DsbA's ability to directly form the correct disulfides by increasing the level of mixed disulfides between DsbA and substrate proteins. One mutant operates via a different mechanism; it contains mutations in DsbB and CpxR that alter the redox environment of the periplasm and increases the level of the chaperone/protease DegP, allowing DsbA to gain disulfide isomerase ability in vivo. Thus, given the proper expression level, redox status, and chaperone assistance, the oxidase DsbA can readily function in vivo to catalyze the folding of proteins with complex disulfide bond connectivities. Our selection reveals versatile strategies for correct disulfide formation in vivo. Remarkably, our evolution of new pathways for correct disulfide bond formation in E. coli mimics eukaryotic PDI, a highly abundant partially reduced protein with chaperone activity. Antioxid. Redox Signal. 14, 2399-2412.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90429/1/ars-2E2010-2E3782.pd
Book Reviews
Reviews of the following books: Dawn Over the Kennebec by Mary R. Calvert; An Honest Woodsman: The Life and Opinions of Dave Priest-Maine Trapper, Guide, and Game Warden by William S. Warner; An Old New England Farm by William Thomson and Kenneth Maclver
Chaperone OsmY facilitates the biogenesis of a major family of autotransporters
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152790/1/mmi14358.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152790/2/mmi14358_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152790/3/mmi14358-sup-0001-Supinfo.pd
Elaborating a coiledâ coilâ assembled octahedral protein cage with additional protein domains
De novo design of protein nanoâ cages has potential applications in medicine, synthetic biology, and materials science. We recently developed a modular, symmetryâ based strategy for protein assembly in which short, coiledâ coil sequences mediate the assembly of a protein building block into a cage. The geometry of the cage is specified by the combination of rotational symmetries associated with the coiledâ coil and protein building block. We have used this approach to design wellâ defined octahedral and tetrahedral cages. Here, we show that the cages can be further elaborated and functionalized by the addition of another protein domain to the free end of the coiledâ coil: in this case by fusing maltoseâ binding protein to an octahedral protein cage to produce a structure with a designed molecular weight of ~1.8 MDa. Importantly, the addition of the maltose binding protein domain dramatically improved the efficiency of assembly, resulting in ~ 60â fold greater yield of purified protein compared to the original cage design. This study shows the potential of using small, coiledâ coil motifs as offâ theâ shelf components to design MDaâ sized protein cages to which additional structural or functional elements can be added in a modular manner.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146469/1/pro3497.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146469/2/pro3497_am.pd
Oxidative protein folding in bacteria
Ten years ago it was thought that disulphide bond formation in prokaryotes occurred spontaneously. Now two pathways involved in disulphide bond formation have been well characterized, the oxidative pathway, which is responsible for the formation of disulphides, and the isomerization pathway, which shuffles incorrectly formed disulphides. Disulphide bonds are donated directly to unfolded polypeptides by the DsbA protein; DsbA is reoxidized by DsbB. DsbB generates disulphides de novo from oxidized quinones. These quinones are reoxidized by the electron transport chain, showing that disulphide bond formation is actually driven by electron transport. Disulphide isomerization requires that incorrect disulphides be attacked using a reduced catalyst, followed by the redonation of the disulphide, allowing alternative disulphide pairing. Two isomerases exist in Escherichia coli , DsbC and DsbG. The membrane protein DsbD maintains these disulphide isomerases in their reduced and thereby active form. DsbD is kept reduced by cytosolic thioredoxin in an NADPH-dependent reaction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75150/1/j.1365-2958.2002.02851.x.pd
Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences
Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE) of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD
Arousal frequency is associated with increased fatigue in obstructive sleep apnea
Fatigue is an important and often underemphasized symptom in patients with obstructive sleep apnea (OSA). Sleep fragmentation, i.e., arousals and disruptions in sleep architecture, is common in patients with OSA and may potentially contribute to their fatigue. We hypothesized that arousal frequency and changes in sleep architecture contribute to the fatigue experienced by patients with OSA.
Seventy-three patients with diagnosed but untreated OSA (AHIââĽâ15) were enrolled in this study. A baseline polysomnogram was obtained, and fatigue was measured with the Multidimensional Fatigue Symptom Inventory-short form (MFSI-sf). We evaluated the association between fatigue and arousals and various polysomongraphic variables, including sleep stages and sleep efficiency.
Significant correlations between MFSI-sf subscale scores and various arousal indices were noted. Emotional fatigue scores were associated with total arousal index (râ=â0.416, pâ=â.021), respiratory movement arousal index (râ=â0.346, pâ=â.025), and spontaneous movement arousal index (râ=â0.378, pâ=â.025). Physical fatigue scores were associated with total arousal index (râ=â0.360, pâ=â.033) and respiratory movement arousal index (râ=â0.304, pâ=â.040). Percent of stage 1 sleep and REM sleep were also associated with physical and emotional fatigue scores. Hierarchal linear regression analysis demonstrated that emotional fatigue scores were independently associated with spontaneous movement arousals after controlling for age, body mass index, depression, and sleep apnea severity.
These findings suggest that arousals may contribute to the fatigue seen in patients with OSA
Symmetryâ Directed Selfâ Assembly of a Tetrahedral Protein Cage Mediated by de Novoâ Designed Coiled Coils
The organization of proteins into new hierarchical forms is an important challenge in synthetic biology. However, engineering new interactions between protein subunits is technically challenging and typically requires extensive redesign of proteinâ protein interfaces. We have developed a conceptually simple approach, based on symmetry principles, that uses short coiledâ coil domains to assemble proteins into higherâ order structures. Here, we demonstrate the assembly of a trimeric enzyme into a wellâ defined tetrahedral cage. This was achieved by genetically fusing a trimeric coiledâ coil domain to its C terminus through a flexible polyglycine linker sequence. The linker length and coiledâ coil strength were the only parameters that needed to be optimized to obtain a high yield of correctly assembled protein cages.Geometry lesson: A modular approach for assembling proteins into largeâ scale geometric structures was developed in which coiledâ coil domains acted as â twist tiesâ to facilitate assembly. The geometry of the cage was specified primarily by the rotational symmetries of the coiled coil and building block protein and was largely independent of protein structural details.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/1/cbic201700406_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/2/cbic201700406.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138862/3/cbic201700406-sup-0001-misc_information.pd
Structure of the Polycomb Group Protein PCGF1 in Complex with BCOR Reveals Basis for Binding Selectivity of PCGF Homologs
SummaryPolycomb-group RING finger homologs (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, and PCGF6) are critical components in the assembly of distinct Polycomb repression complex 1 (PRC1)-related complexes. Here, we identify a protein interaction domain in BCL6 corepressor, BCOR, which binds the RING finger- and WD40-associated ubiquitin-like (RAWUL) domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals that (1) PUFD binds to the same surfaces as observed for a different Polycomb group RAWUL domain and (2) the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly
The second Palomar-Leiden Trojan survey
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
- âŚ