42 research outputs found

    microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer

    Get PDF
    BACKGROUND: Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA) have been shown to be involved in development and progression of gastric cancer. miRNA-146a (miR-146a) is a modulator of inflammatory signals, but little is known about its importance in gastric cancer. We therefore wanted to identify targets of miR-146a in gastric cancer and examine its biological roles. RESULTS: The expression of miR-146a was evaluated by quantitative PCR (qPCR) and found up-regulated in the gastrin knockout mice, a mouse model of gastric cancer, and in 73% of investigated human gastric adenocarcinomas. Expression of miR-146a by gastric cancer cells was confirmed by in situ hybridization. Global analysis of changes in mRNA levels after miR-146a transfection identified two transcripts, caspase recruitment domain-containing protein 10 (CARD10) and COP9 signalosome complex subunit 8 (COPS8), as new miR-146a targets. qPCR, Western blotting and luciferase assays confirmed these transcripts as direct miR-146a targets. CARD10 and COPS8 were shown to be part of the G protein-coupled receptor (GPCR) pathway of nuclear factor-kappaB (NF-kappaB) activation. Lysophosphatidic acid (LPA) induces NF-kappaB activation via this pathway and over-expression of miR-146a inhibited LPA-induced NF-kappaB activation, reduced LPA-induced expression of tumor-promoting cytokines and growth factors and inhibited monocyte attraction. CONCLUSIONS: miR-146a expression is up-regulated in a majority of gastric cancers where it targets CARD10 and COPS8, inhibiting GPCR-mediated activation of NF-kappaB, thus reducing expression of NF-kappaB-regulated tumor-promoting cytokines and growth factors. By targeting components of several NF-kappaB-activating pathways, miR-146a is a key component in the regulation of NF-kappaB activity

    miR-449 inhibits cell proliferation and is down-regulated in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer is the fourth most common cancer in the world and the second most prevalent cause of cancer related death. The development of gastric cancer is mainly associated with <it>H. Pylori </it>infection leading to a focus in pathology studies on bacterial and environmental factors, and to a lesser extent on the mechanistic development of the tumour. MicroRNAs are small non-coding RNA molecules involved in post-transcriptional gene regulation. They are found to regulate genes involved in diverse biological functions and alterations in microRNA expression have been linked to the pathogenesis of many malignancies. The current study is focused on identifying microRNAs involved in gastric carcinogenesis and to explore their mechanistic relevance by characterizing their targets.</p> <p>Results</p> <p>Invitrogen NCode miRNA microarrays identified miR-449 to be decreased in 1-year-old <it>Gastrin </it>KO mice and in <it>H. Pylori </it>infected gastric tissues compared to tissues from wild type animals. Growth rate of gastric cell lines over-expressing miR-449 was inhibited by 60% compared to controls. FACS cell cycle analysis of miR-449 over-expressing cells showed a significant increase in the sub-G<sub>1 </sub>fraction indicative of apoptosis. ß-Gal assays indicated a senescent phenotype of gastric cell lines over-expressing miR-449. Affymetrix 133v2 arrays identified <it>GMNN</it>, <it>MET, CCNE2, SIRT1 </it>and <it>CDK6 </it>as miR-449 targets. Luciferase assays were used to confirm <it>GMNN</it>, <it>MET</it>, <it>CCNE2 </it>and <it>SIRT1 </it>as direct targets. We also show that miR-449 over-expression activated p53 and its downstream target p21 as well as the apoptosis markers cleaved CASP3 and PARP. Importantly, qPCR analyses showed a loss of miR-449 expression in human clinical gastric tumours compared to normal tissues.</p> <p>Conclusions</p> <p>In this study, we document a diminished expression of miR-449 in <it>Gastrin </it>KO mice and further confirmed its loss in human gastric tumours. We investigated the function of miR-449 by identifying its direct targets. Furthermore we show that miR-449 induces senescence and apoptosis by activating the p53 pathway.</p

    Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers.

    Get PDF
    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3) families with diagnoses of both DGC and LBC (one diagnosis before the age of 50). Additionally, CDH1 testing could be considered in patients with bilateral or familial LBC before the age of 50, patients with DGC and cleft lip/palate, and those with precursor lesions for signet ring cell carcinoma. Given the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic surveillance in experienced centres is recommended for those opting not to have gastrectomy at the current time, those with CDH1 variants of uncertain significance and those that fulfil hereditary DGC criteria without germline CDH1 mutations. Expert histopathological confirmation of (early) signet ring cell carcinoma is recommended. The impact of gastrectomy and mastectomy should not be underestimated; these can have severe consequences on a psychological, physiological and metabolic level. Nutritional problems should be carefully monitored
    corecore