313 research outputs found
On the analyticity and Gevrey class regularity up to the boundary for the Euler Equations
We consider the Euler equations in a three-dimensional Gevrey-class bounded
domain. Using Lagrangian coordinates we obtain the Gevrey-class persistence of
the solution, up to the boundary, with an explicit estimate on the rate of
decay of the Gevrey-class regularity radius
Mean-field evolution of fermions with singular interaction
We consider a system of N fermions in the mean-field regime interacting
though an inverse power law potential , for
. We prove the convergence of a solution of the many-body
Schr\"{o}dinger equation to a solution of the time-dependent Hartree-Fock
equation in the sense of reduced density matrices. We stress the dependence on
the singularity of the potential in the regularity of the initial data. The
proof is an adaptation of [22], where the case is treated.Comment: 16 page
Quantum Kinetic Evolution of Marginal Observables
We develop a rigorous formalism for the description of the evolution of
observables of quantum systems of particles in the mean-field scaling limit.
The corresponding asymptotics of a solution of the initial-value problem of the
dual quantum BBGKY hierarchy is constructed. Moreover, links of the evolution
of marginal observables and the evolution of quantum states described in terms
of a one-particle marginal density operator are established. Such approach
gives the alternative description of the kinetic evolution of quantum
many-particle systems to generally accepted approach on basis of kinetic
equations.Comment: 18 page
The von Neumann Hierarchy for Correlation Operators of Quantum Many-Particle Systems
The Cauchy problem for the von Neumann hierarchy of nonlinear equations is
investigated. One describes the evolution of all possible states of quantum
many-particle systems by the correlation operators. A solution of such
nonlinear equations is constructed in the form of an expansion over particle
clusters whose evolution is described by the corresponding order cumulant
(semi-invariant) of evolution operators for the von Neumann equations. For the
initial data from the space of sequences of trace class operators the existence
of a strong and a weak solution of the Cauchy problem is proved. We discuss the
relationships of this solution both with the -particle statistical
operators, which are solutions of the BBGKY hierarchy, and with the
-particle correlation operators of quantum systems.Comment: 26 page
A Note on the Regularity of Inviscid Shell Model of Turbulence
In this paper we continue the analytical study of the sabra shell model of
energy turbulent cascade initiated in \cite{CLT05}. We prove the global
existence of weak solutions of the inviscid sabra shell model, and show that
these solutions are unique for some short interval of time. In addition, we
prove that the solutions conserve the energy, provided that the components of
the solution satisfy , for
some positive absolute constant , which is the analogue of the Onsager's
conjecture for the Euler's equations. Moreover, we give a Beal-Kato-Majda type
criterion for the blow-up of solutions of the inviscid sabra shell model and
show the global regularity of the solutions in the ``two-dimensional''
parameters regime
Lack of interest in physical activity : individual and environmental attributes in adults across Europe : the SPOTLIGHT project
A considerable proportion of European adults report little or no interest in physical activity. Identifying individual-level and environmental-level characteristics of these individuals can help designing effective interventions and policies to promote physical activity. This cross-sectional study additionally explored associations between level of interest and physical activity, after controlling for other individual and environmental variables. Measures of objective and perceived features of the physical environment of residence, self-reported physical activity and other lifestyle behaviors, barriers towards physical activity, general health, and demographics were obtained from 5205 European adults participating in the 2014 online SPOTLIGHT survey. t-Tests, chi-square tests, and generalized estimating equations with negative binomial log-link function were conducted. Adults not interested in physical activity reported a higher BMI and a lower self-rated health, were less educated, and to a smaller extent female and less frequently employed. They were more prone to have less healthy eating habits, and to perceive more barriers towards physical activity. Only minor differences were observed in environmental attributes: the non-interested were slightly more likely to live in neighborhoods objectively characterized as less aesthetic and containing more destinations, and perceived as less functional, safe, and aesthetic. Even after controlling for other individual and environmental factors, interest in physical activity remained a significant correlate of physical activity, supporting the importance of this association. This study is among the first to describe characteristics of individuals with reduced interest in physical activity, suggesting that (lack of) interest is a robust correlate of physical activity in several personal and environmental conditions
Global generalized solutions for Maxwell-alpha and Euler-alpha equations
We study initial-boundary value problems for the Lagrangian averaged alpha
models for the equations of motion for the corotational Maxwell and inviscid
fluids in 2D and 3D. We show existence of (global in time) dissipative
solutions to these problems. We also discuss the idea of dissipative solution
in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit
Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers
The rotated multipliers method is performed in the case of the boundary
stabilization by means of a(linear or non-linear) Neumann feedback. this method
leads to new geometrical cases concerning the "active" part of the boundary
where the feedback is apllied. Due to mixed boundary conditions, these cases
generate singularities. Under a simple geometrical conditon concerning the
orientation of boundary, we obtain a stabilization result in both cases.Comment: 17 pages, 9 figure
The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field
In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun.
Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied
the joint dynamics of a classical point particle and a wave type generalization
of the Newtonian gravity potential, coupled in a regularized way. In the
present paper the many-body dynamics of this model is studied. The Vlasov
continuum limit is obtained in form equivalent to a weak law of large numbers.
We also establish a central limit theorem for the fluctuations around this
limit.Comment: 68 pages. Smaller corrections: two inequalities in sections 3 and two
inequalities in section 4, and definition of a Banach space in appendix A1.
Presentation of LLN and CLT in section 4.3 improved. Notation improve
Boundary stabilization of numerical approximations of the 1-D variable coefficients wave equation: A numerical viscosity approach
In this paper, we consider the boundary stabilization problem associated to the 1- d wave equation with both variable density and diffusion coefficients and to its finite difference semi-discretizations. It is well-known that, for the finite difference semi-discretization of the constant coefficients wave equation on uniform meshes (Tébou and Zuazua, Adv. Comput. Math. 26:337–365, 2007) or on somenon-uniform meshes (Marica and Zuazua, BCAM, 2013, preprint), the discrete decay rate fails to be uniform with respect to the mesh-size parameter. We prove that, under suitable regularity assumptions on the coefficients and after adding an appropriate artificial viscosity to the numerical scheme, the decay rate is uniform as the mesh-size tends to zero. This extends previous results in Tébou and Zuazua (Adv. Comput.Math. 26:337–365, 2007) on the constant coefficient wave equation. The methodology of proof consists in applying the classical multiplier technique at the discrete level, with a multiplier adapted to the variable coefficients
- …