558 research outputs found
Spectral fluctuations of tridiagonal random matrices from the beta-Hermite ensemble
A time series delta(n), the fluctuation of the nth unfolded eigenvalue was
recently characterized for the classical Gaussian ensembles of NxN random
matrices (GOE, GUE, GSE). It is investigated here for the beta-Hermite ensemble
as a function of beta (zero or positive) by Monte Carlo simulations. The
fluctuation of delta(n) and the autocorrelation function vary logarithmically
with n for any beta>0 (1<<n<<N). The simple logarithmic behavior reported for
the higher-order moments of delta(n) for the GOE (beta=1) and the GUE (beta=2)
is valid for any positive beta and is accounted for by Gaussian distributions
whose variances depend linearly on ln(n). The 1/f noise previously demonstrated
for delta(n) series of the three Gaussian ensembles, is characterized by
wavelet analysis both as a function of beta and of N. When beta decreases from
1 to 0, for a given and large enough N, the evolution from a 1/f noise at
beta=1 to a 1/f^2 noise at beta=0 is heterogeneous with a ~1/f^2 noise at the
finest scales and a ~1/f noise at the coarsest ones. The range of scales in
which a ~1/f^2 noise predominates grows progressively when beta decreases.
Asymptotically, a 1/f^2 noise is found for beta=0 while a 1/f noise is the rule
for beta positive.Comment: 35 pages, 10 figures, corresponding author: G. Le Cae
Comparison of Pretectal Genoarchitectonic Pattern between Quail and Chicken Embryos
Regionalization of the central nervous system is controlled by local networks of transcription factors that establish and maintain the identities of neuroepithelial progenitor areas and their neuronal derivatives. The conserved cerebral Bauplan of vertebrates must result essentially from conserved patterns of developmentally expressed transcription factors. We have previously produced detailed molecular maps for the alar plate of prosomere 1 (the pretectal region) in chicken (Ferran et al., 2007, 2008, 2009). Here we compare the early molecular signature of the pretectum of two closely related avian species of the family Phasianidae, Coturnix japonica (Japanese quail) and Gallus gallus (chicken), aiming to test conservation of the described pattern at a microevolutionary level. We studied the developmental pretectal expression of Bhlhb4, Dbx1, Ebf1, Gata3, Gbx2, Lim1, Meis1, Meis2, Pax3, Pax6, Six3, Tal2, and Tcf7l2 (Tcf4) mRNA, using in situ hybridization, and PAX7 immunohistochemistry. The genoarchitectonic profile of individual pretectal domains and strata was produced, using comparable section planes. Remarkable conservation of the combinatorial genoarchitectonic code was observed, fundamented in a tripartite anteroposterior subdivision. However, we found that at corresponding developmental stages the pretectal region of G. gallus was approximately 30% larger than that of C. japonica, but seemed relatively less mature. Altogether, our results on a conserved genoarchitectonic pattern highlight the importance of early developmental gene networks that causally underlie the production of homologous derivatives in these two evolutionarily closely related species. The shared patterns probably apply to sauropsids in general, as well as to more distantly related vertebrate species
Ontogenetic Expression of Sonic Hedgehog in the Chicken Subpallium
Sonic hedgehog (SHH) is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS), somites, and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord) and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatiotemporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1, and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh-positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum
A Markov Chain based method for generating long-range dependence
This paper describes a model for generating time series which exhibit the
statistical phenomenon known as long-range dependence (LRD). A Markov Modulated
Process based upon an infinite Markov chain is described. The work described is
motivated by applications in telecommunications where LRD is a known property
of time-series measured on the internet. The process can generate a time series
exhibiting LRD with known parameters and is particularly suitable for modelling
internet traffic since the time series is in terms of ones and zeros which can
be interpreted as data packets and inter-packet gaps. The method is extremely
simple computationally and analytically and could prove more tractable than
other methods described in the literatureComment: 8 pages, 2 figure
LIUM-CVC submissions for WMT17 multimodal translation task
This paper describes the monomodal and multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT17 Shared Task on Multimodal Translation. We mainly explored two multimodal architectures where either global visual features or convolutional feature maps are integrated in order to benefit from visual context. Our final systems ranked first for both En-De and En-Fr language pairs according to the automatic evaluation metrics METEOR and BLEU
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes.
Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture
A new lower Turonian mosasaurid from the Western Interior Seaway and the antiquity of the unique basicranial circulation pattern in Plioplatecarpinae
We describe and name a new mosasaur taxon, Sarabosaurus dahli gen. et sp. nov., from the lower Turonian part of the Tropic Shale in Utah, USA. The holotype specimen preserves significant portions of the skull and axial postcranial skeleton. It was found in the upper part of the Watinoceras devonense Ammonite Zone, bounded by radioisotopic dates above and below, and is thus about 93.7 Ma, the oldest mosasaurid taxon known from the Western Interior Seaway. The new taxon possesses a vascular pattern of the basisphenoid heretofore only seen in late diverging plioplatecarpine mosasaurids. Reevaluation of the morphology of the basisphenoid of previously described Turonian mosasaurs using μCT techniques reveals the derived condition is also present in Yaguasaurus and the incipient condition in Tethysaurus and Russellosaurus. In these two taxa, the canals enter the basisphenoid, but do not pass into the basioccipital. Instead, they exit only high on the posterior wall of the sella turcica, in a position similar to the basilar artery of other lizards. This vascular pattern, both in its incipient and derived states, is unique among squamates and supports inclusion of the aforementioned taxa in a monophyletic Plioplatecarpinae, for which we provide an emended diagnosis. Phylogenetic analysis recovers Sarabosaurus dahli gen. et sp. nov. as the sister taxon to Yaguarasaurus and all other later diverging plioplatecarpines, with Russellosaurus and Tethysaurus as successive sister taxa. Tylosaurine mosasaurids retain the primitive condition of the basisphenoid vascularization pattern and implies a tylosaurine-plioplatecarpine divergence in the late Cenomanian or earliest Turonian
Topography of Somatostatin Gene Expression Relative to Molecular Progenitor Domains during Ontogeny of the Mouse Hypothalamus
The hypothalamus comprises alar, basal, and floor plate developmental compartments. Recent molecular data support a rostrocaudal subdivision into rostral (terminal) and caudal (peduncular) halves. In this context, the distribution of neuronal populations expressing somatostatin (Sst) mRNA was analyzed in the developing mouse hypothalamus, comparing with the expression pattern of the genes Orthopedia (Otp), Distal-less 5 (Dlx5), Sonic Hedgehog (Shh), and Nk2 homeobox 1 (Nkx2.1). At embryonic day 10.5 (E10.5), Sst mRNA was first detectable in the anterobasal nucleus, a Nkx2.1-, Shh-, and Otp-positive basal domain. By E13.5, nascent Sst expression was also related to two additional Otp-positive domains within the alar plate and one in the basal plate. In the alar plate, Sst-positive cells were observed in rostral and caudal ventral subdomains of the Otp-positive paraventricular complex. An additional basal Sst-expressing cell group was found within a longitudinal Otp-positive periretromamillary band that separates the retromamillary area from tuberal areas. Apart of subsequent growth of these initial populations, at E13.5 and E15.5 some Sst-positive derivatives migrate tangentially into neighboring regions. A subset of cells produced at the anterobasal nucleus disperses ventralward into the shell of the ventromedial hypothalamic nucleus and the arcuate nucleus. Cells from the rostroventral paraventricular subdomain reach the suboptic nucleus, whereas a caudal contingent migrates radially into lateral paraventricular, perifornical, and entopeduncular nuclei. Our data provide a topologic map of molecularly defined progenitor areas originating a specific neuron type during early hypothalamic development. Identification of four main separate sources helps to understand causally its complex adult organization
Modelo impresso em 3D usado num planeamento cirúrgico de um cão com radius curvus
An 8 month-old, 10 kg male Azawakh dog was presented due to worsening forelimb gait and exercise intolerance. The right forelimb presented gross angular limb deformity with carpal valgus and radial procurvatum. Surgical planning based on radiographs allowed calculation of the centers of rotation and angularity (CORAs). The computer tomography data were used to generate 3D reconstructions of the antebrachium to aid the detection of the orthopaedic problems. With proper imaging software, the nature of the deformity and its degree were quantified using a previously unreported method based on the CORAs as a 3D printed model of anatomical area of interest. This 3D printed model was used by the surgeon to simulate the surgery with all orthopaedic steps, which included a partial ulna osteotomy and a double cuneiform osteotomy of the radius performed at the level of CORAs and stabilized with bone plates and screws. After 7 weeks, radiographs revealed bone union. At 8 months after surgery the animal presented a complete recovery of the involved forelimb. CORAs method combined with computed tomography and 3D model was useful to plan and simulate surgical procedures, including the corrective surgery of forelimb deformities in a dog which improved the surgical efficiency comparatively to the conventional pre-operative study.Um cão com 8 meses de idade, 10kg de peso vivo, macho da raça Azawakh foi apresentado à clínica devido à intolerância ao exercício e agravamento da marcha do membro anterior. O membro anterior direito apresentou uma deformidade angular com valgus carpal e com um procarvatum radial. O planeamento cirúrgico inicialmente baseado em exames radiográficos possibilitou o cálculo dos centros de rotação e angulação articulares (CORAs). O exame de tomografia computadorizada foi utilizado juntamente com um software de imagiologia para obter o modelo 3D virtual da área anatómica de interesse que foi posteriormente impresso em 3D e que permitiu quantificar micrometricamente a deformação óssea presente. Este modelo 3D foi utilizado pelos cirurgiões para executar uma simulação cirúrgica completa que englobou todos os procedimentos cirúrgicos, que incluiu a realização de várias osteotomias e aplicação do material cirúrgico (placas e parafusos). Com base na simulação cirúrgica foi executada a cirurgia ao animal. Decorridas sete semanas, as radiografias demonstraram uma correta regeneração óssea. Oito meses após a cirurgia o animal apresentou uma recuperação completa. O método dos CORAs juntamente com a tomografia computadorizada e com a utilização do modelo 3D revelou-se útil no planeamento e na simulação dos vários procedimentos cirúrgicos, resultando numa melhoria significativa da eficiência cirúrgica
- …