97 research outputs found

    Bondi-Sachs Energy-Momentum for the CMC Initial Value Problem

    Get PDF
    The constraints on the asymptotic behavior of the conformal factor and conformal extrinsic curvature imposed by the initial value equations of general relativity on constant mean extrinsic curvature (CMC) hypersurfaces are analyzed in detail. We derive explicit formulas for the Bondi-Sachs energy and momentum in terms of coefficients of asymptotic expansions on CMC hypersurfaces near future null infinity. Precise numerical results for the Bondi-Sachs energy, momentum, and angular momentum are used to interpret physically Bowen-York solutions of the initial value equations on conformally flat CMC hypersurfaces of the type obtained earlier by Buchman et al. [Phys. Rev. D 80:084024 (2009)].Comment: version to be published in Phys. Rev.

    Black hole initial data on hyperboloidal slices

    Full text link
    We generalize Bowen-York black hole initial data to hyperboloidal constant mean curvature slices which extend to future null infinity. We solve this initial value problem numerically for several cases, including unequal mass binary black holes with spins and boosts. The singularity at null infinity in the Hamiltonian constraint associated with a constant mean curvature hypersurface does not pose any particular difficulties. The inner boundaries of our slices are minimal surfaces. Trumpet configurations are explored both analytically and numerically.Comment: version for publication in Phys. Rev.

    Radiation fields in the Schwarzschild background

    Get PDF
    Scalar, electromagnetic, and gravitational test fields in the Schwarzschild background are examined with the help of the general retarded solution of a single master wave equation. The solution for each multipole is generated by a single arbitrary function of retarded time, the retarded multipole moment. We impose only those restrictions on the time dependence of the multipole moment which are required for physical regularity. We find physically well-behaved solutions which (i) do not satisfy the Penrose peeling theorems at past null infinity and/or (ii) do not have well-defined Newman-Penrose quantities. Even when the NP quantities exist, they are not measurable; they represent an "average" multipole moment over the infinite past, and their conservation is essentially trivial

    Tetrad formalism for numerical relativity on conformally compactified constant mean curvature hypersurfaces

    Get PDF
    We present a new evolution system for Einstein's field equations which is based on tetrad fields and conformally compactified hyperboloidal spatial hypersurfaces which reach future null infinity. The boost freedom in the choice of the tetrad is fixed by requiring that its timelike leg be orthogonal to the foliation, which consists of constant mean curvature slices. The rotational freedom in the tetrad is fixed by the 3D Nester gauge. With these conditions, the field equations reduce naturally to a first-order constrained symmetric hyperbolic evolution system which is coupled to elliptic equations for the gauge variables. The conformally rescaled equations are given explicitly, and their regularity at future null infinity is discussed. Our formulation is potentially useful for high accuracy numerical modeling of gravitational radiation emitted by inspiraling and merging black hole binaries and other highly relativistic isolated systems.Comment: Corrected factor of 2 errors in Eqs. (A8) and (A9) and a few typos; final versio

    The Extreme Kerr Throat Geometry: A Vacuum Analog of AdS_2 x S^2

    Full text link
    We study the near horizon limit of a four dimensional extreme rotating black hole. The limiting metric is a completely nonsingular vacuum solution, with an enhanced symmetry group SL(2,R) x U(1). We show that many of the properties of this solution are similar to the AdS_2 x S^2 geometry arising in the near horizon limit of extreme charged black holes. In particular, the boundary at infinity is a timelike surface. This suggests the possibility of a dual quantum mechanical description. A five dimensional generalization is also discussed.Comment: 21 page

    Andreev Reflections in Micrometer-Scale Normal-Insulator-Superconductor Tunnel Junctions

    Full text link
    Understanding the subgap behavior of Normal-Insulator-Superconductor (NIS) tunnel junctions is important in order to be able to accurately model the thermal properties of the junctions. Hekking and Nazarov developed a theory in which NIS subgap current in thin-film structures can be modeled by multiple Andreev reflections. In their theory, the current due to Andreev reflections depends on the junction area and the junction resistance area product. We have measured the current due to Andreev reflections in NIS tunnel junctions for various junction sizes and junction resistance area products and found that the multiple reflection theory is in agreement with our data
    • …
    corecore