5,224 research outputs found
Spurious Shear in Weak Lensing with LSST
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST)
will image 20,000 square degrees of sky in six filter bands every few
nights, bringing the final survey depth to , with over 4 billion
well measured galaxies. To take full advantage of this unprecedented
statistical power, the systematic errors associated with weak lensing
measurements need to be controlled to a level similar to the statistical
errors.
This work is the first attempt to quantitatively estimate the absolute level
and statistical properties of the systematic errors on weak lensing shear
measurements due to the most important physical effects in the LSST system via
high fidelity ray-tracing simulations. We identify and isolate the different
sources of algorithm-independent, \textit{additive} systematic errors on shear
measurements for LSST and predict their impact on the final cosmic shear
measurements using conventional weak lensing analysis techniques. We find that
the main source of the errors comes from an inability to adequately
characterise the atmospheric point spread function (PSF) due to its high
frequency spatial variation on angular scales smaller than in the
single short exposures, which propagates into a spurious shear correlation
function at the -- level on these scales. With the large
multi-epoch dataset that will be acquired by LSST, the stochastic errors
average out, bringing the final spurious shear correlation function to a level
very close to the statistical errors. Our results imply that the cosmological
constraints from LSST will not be severely limited by these
algorithm-independent, additive systematic effects.Comment: 22 pages, 12 figures, accepted by MNRA
Abundances of Baade's Window Giants from Keck/HIRES Spectra: I. Stellar Parameters and [Fe/H] Values
We present the first results of a new abundance survey of the Milky Way bulge
based on Keck/HIRES spectra of 27 K-giants in the Baade's Window (, ) field. The spectral data used in this study are of much higher resolution
and signal-to-noise than previous optical studies of Galactic bulge stars. The
[Fe/H] values of our stars, which range between -1.29 and , were used to
recalibrate large low resolution surveys of bulge stars. Our best value for the
mean [Fe/H] of the bulge is . This mean value is similar to the
mean metallicity of the local disk and indicates that there cannot be a strong
metallicity gradient inside the solar circle. The metallicity distribution of
stars confirms that the bulge does not suffer from the so-called ``G-dwarf''
problem. This paper also details the new abundance techniques necessary to
analyze very metal-rich K-giants, including a new Fe line list and regions of
low blanketing for continuum identification.Comment: Accepted for publication in January 2006 Astrophysical Journal. Long
tables 3--6 withheld to save space (electronic tables in journal paper). 53
pages, 10 figures, 9 table
Rubidium in Metal-Deficient Disk and Halo Stars
We report the first extensive study of stellar Rb abundances. High-resolution
spectra have been used to determine, or set upper limits on, the abundances of
this heavy element and the associated elements Y, Zr, and Ba in 44 dwarfs and
giants with metallicities spanning the range -2.0 <[Fe/H] < 0.0. In
metal-deficient stars Rb is systematically overabundant relative to Fe; we find
an average [Rb/Fe] of +0.21 for the 32 stars with [Fe/H] < -0.5 and measured
Rb. This behavior contrasts with that of Y, Zr, and Ba, which, with the
exception of three new CH stars (HD 23439A and B and BD +5 3640), are
consistently slightly deficient relative to Fe in the same stars; excluding the
three CH stars, we find the stars with [Fe/H] < -0.5 have average [Y/Fe],
[Zr/Fe], and [Ba/Fe] of --0.19 (24 stars), --0.12 (28 stars), and --0.06 (29
stars), respectively. The different behavior of Rb on the one hand and Y, Zr,
and Ba on the other can be attributed in part to the fact that in the Sun and
in these stars Rb has a large r-process component while Y, Zr, and Ba are
mostly s-process elements with only small r-process components. In addition,
the Rb s-process abundance is dependent on the neutron density at the
s-processing site. Published observations of Rb in s-process enriched red
giants indicate a higher neutron density in the metal-poor giants. These
observations imply a higher s-process abundance for Rb in metal-poor stars. The
calculated combination of the Rb r-process abundance, as estimated for the
stellar Eu abundances, and the s-process abundance as estimated for red giants
accounts satisfactorily for the observed run of [Rb/Fe] with [Fe/H].Comment: 23 pages, 5 tables, 7 figure
Stochastic Hysteresis and Resonance in a Kinetic Ising System
We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor,
kinetic Ising ferromagnet in an oscillating field, using Monte Carlo
simulations and analytical theory. Attention is focused on small systems and
weak field amplitudes at a temperature below . For these restricted
parameters, the magnetization switches through random nucleation of a single
droplet of spins aligned with the applied field. We analyze the stochastic
hysteresis observed in this parameter regime, using time-dependent nucleation
theory and the theory of variable-rate Markov processes. The theory enables us
to accurately predict the results of extensive Monte Carlo simulations, without
the use of any adjustable parameters. The stochastic response is qualitatively
different from what is observed, either in mean-field models or in simulations
of larger spatially extended systems. We consider the frequency dependence of
the probability density for the hysteresis-loop area and show that its average
slowly crosses over to a logarithmic decay with frequency and amplitude for
asymptotically low frequencies. Both the average loop area and the
residence-time distributions for the magnetization show evidence of stochastic
resonance. We also demonstrate a connection between the residence-time
distributions and the power spectral densities of the magnetization time
series. In addition to their significance for the interpretation of recent
experiments in condensed-matter physics, including studies of switching in
ferromagnetic and ferroelectric nanoparticles and ultrathin films, our results
are relevant to the general theory of periodically driven arrays of coupled,
bistable systems with stochastic noise.Comment: 35 pages. Submitted to Phys. Rev. E Minor revisions to the text and
updated reference
Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping
The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2â10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods
Methodological approaches to determining the marine radiocarbon reservoir effect
The marine radiocarbon reservoir effect is an offset in 14C age between contemporaneous organisms from the terrestrial environment and organisms that derive their carbon from the marine environment. Quantification of this effect is of crucial importance for correct calibration of the <sup>14</sup>C ages of marine-influenced samples to the calendrical timescale. This is fundamental to the construction of archaeological and palaeoenvironmental chronologies when such samples are employed in <sup>14</sup>C analysis. Quantitative measurements of temporal variations in regional marine reservoir ages also have the potential to be used as a measure of process changes within Earth surface systems, due to their link with climatic and oceanic changes. The various approaches to quantification of the marine radiocarbon reservoir effect are assessed, focusing particularly on the North Atlantic Ocean. Currently, the global average marine reservoir age of surface waters, R(t), is c. 400 radiocarbon years; however, regional values deviate from this as a function of climate and oceanic circulation systems. These local deviations from R(t) are expressed as +R values. Hence, polar waters exhibit greater reservoir ages (δR = c. +400 to +800 <sup>14</sup>C y) than equatorial waters (δR = c. 0 <sup>14</sup>C y). Observed temporal variations in δR appear to reflect climatic and oceanographic changes. We assess three approaches to quantification of marine reservoir effects using known age samples (from museum collections), tephra isochrones (present onshore/offshore) and paired marine/terrestrial samples (from the same context in, for example, archaeological sites). The strengths and limitations of these approaches are evaluated using examples from the North Atlantic region. It is proposed that, with a suitable protocol, accelerator mass spectrometry (AMS) measurements on paired, short-lived, single entity marine and terrestrial samples from archaeological deposits is the most promising approach to constraining changes over at least the last 5 ky BP
Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole
We report on studies of the viability and sensitivity of the Askaryan Radio
Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy
neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at
the South Pole. An initial prototype ARA detector system was installed in
January 2011, and has been operating continuously since then. We report on
studies of the background radio noise levels, the radio clarity of the ice, and
the estimated sensitivity of the planned ARA array given these results, based
on the first five months of operation. Anthropogenic radio interference in the
vicinity of the South Pole currently leads to a few-percent loss of data, but
no overall effect on the background noise levels, which are dominated by the
thermal noise floor of the cold polar ice, and galactic noise at lower
frequencies. We have also successfully detected signals originating from a 2.5
km deep impulse generator at a distance of over 3 km from our prototype
detector, confirming prior estimates of kilometer-scale attenuation lengths for
cold polar ice. These are also the first such measurements for propagation over
such large slant distances in ice. Based on these data, ARA-37, the 200 km^2
array now under construction, will achieve the highest sensitivity of any
planned or existing neutrino detector in the 10^{16}-10^{19} eV energy range.Comment: 25 pages, 37 figures, this version with improved ice attenuation
length analysis; for submission to Astroparticle Physic
Electrochemistry at nanoscale electrodes : individual single-walled carbon nanotubes (SWNTs) and SWNT-templated metal nanowires
Individual nanowires (NWs) and native single-walled carbon nanotubes (SWNTs) can be readily used as well-defined nanoscale electrodes (NSEs) for voltammetric analysis. Here, the simple photolithography-free fabrication of submillimeter long Au, Pt, and Pd NWs, with sub-100 nm heights, by templated electrodeposition onto ultralong flow-aligned SWNTs is demonstrated. Both individual Au NWs and SWNTs are employed as NSEs for electron-transfer (ET) kinetic quantification, using cyclic voltammetry (CV), in conjunction with a microcapillary-based electrochemical method. A small capillary with internal diameter in the range 30â70 ÎŒm, filled with solution containing a redox-active mediator (FcTMA+ ((trimethylammonium)methylferrocene), Fe(CN)64â, or hydrazine) is positioned above the NSE, so that the solution meniscus completes an electrochemical cell. A 3D finite-element model, faithfully reproducing the experimental geometry, is used to both analyze the experimental CVs and derive the rate of heterogeneous ET, using ButlerâVolmer kinetics. For a 70 nm height Au NW, intrinsic rate constants, k0, up to ca. 1 cm sâ1 can be resolved. Using the same experimental configuration the electrochemistry of individual SWNTs can also be accessed. For FcTMA+/2+ electrolysis the simulated ET kinetic parameters yield very fast ET kinetics (k0 > 2 ± 1 cm sâ1). Some deviation between the experimental voltammetry and the idealized model is noted, suggesting that double-layer effects may influence ET at the nanoscale
Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes
As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society
- âŠ