24 research outputs found

    Cannabidiol, ∆9 -Tetrahydrocannabinol, and Metabolites in Human Blood by Volumetric Absorptive Microsampling and LC-MS/MS Following Controlled Administration in Epilepsy Patients

    Get PDF
    Cannabidiol (CBD) exhibits anti-inflammatory, anxiolytic, antiseizure, and neuroprotective proprieties without addictive or psychotropic side effects, as opposed to Δ9-tetrahydrocannabinol (THC). While recreational cannabis contains higher THC and lower CBD concentrations, medical cannabis contains THC and CBD in different ratios, along with minor phytocannabinoids, terpenes, flavonoids and other chemicals. A volumetric absorptive microsampling (VAMS) method combined with ultra-high-performance liquid chromatography coupled with mass spectrometry in tandem for quantification of CBD, THC and their respective metabolites: cannabidiol-7-oic acid (7-COOH-CBD); 7-hydroxy-cannabidiol (7-OH-CBD); 6-alpha-hydroxy-cannabidiol (6-α-OH-CBD); and 6-beta-hydroxycannabidiol (6-β-OH-CBD); 11- Hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH). After overnight enzymatic glucuronide hydrolysis at 37°C, samples underwent acidic along with basic liquid-liquid extraction with hexane: ethyl acetate (9:1, v/v). Chromatographic separation was carried out on a C18 column, with the mass spectrometer operated in multiple reaction monitoring mode and negative electrospray ionization. Seven patients with intractable epilepsy were dosed with various CBD-containing formulations and blood collected just before their daily morning administration. The method was validated following international guidelines in toxicology. Linear ranges were (ng/ml) 0.5-25 THC, 11-OH-THC, THCCOOH, 6-α-OH-CBD and 6-β-OH-CBD; 10-500 CBD and 7-OH-CBD; and 20-5000 7-COOH-CBD. 7-COOH-CBD was present in the highest concentrations, followed by 7-OH-CBD and CBD. This analytical method is useful for investigating CBD, THC and their major metabolites in epilepsy patients treated with CBD preparations employing a minimally invasive microsampling technique requiring only 30 µL blood

    Altered erythropoiesis and decreased number of erythrocytes in children with neuroblastoma

    Get PDF
    Neuroblastoma (NB) is a pediatric tumor presenting at diagnosis either as localized or metastatic disease, which mainly involves the bone marrow (BM). The physical occupancy of BM space by metastatic NB cells has been held responsible for impairment of BM function. Here, we investigated whether localized or metastatic NB may alter hematopoietic lineages' maturation and release of mature cells in the periphery, through gene expression profiling, analysis of BM smears, cell blood count and flow cytometry analysis. Gene ontology and disease-associated analysis of the genes significantly under-expressed in BM resident cells from children with localized and metastatic NB, as compared to healthy children, indicated anemia, blood group antigens, and heme and porphyrin biosynthesis as major functional annotation clusters. Accordingly, in children with NB there was a selective impairment of erythrocyte maturation at the ortho-chromic stage that resulted in reduced erythrocyte count in the periphery, regardless of the presence of metastatic cells in the BM. By considering all NB patients, low erythrocyte count at diagnosis associated with worse survival. Moreover, in the subset of metastatic patients, low erythrocyte count, hemoglobin and hematocrit and high red cell distribution width at follow-up also associated with worse outcome. These observations provide an alternative model to the tenet that infiltrating cells inhibit BM functions due to physical occupancy of space and may open a new area of research in NB to understand the mechanism(s) responsible for such selective impairment

    A LC–MS/MS method for the quantification of caffeine, betamethasone, clonidine and furosemide in cerebrospinal fluid of preterm infants

    No full text
    Background: Newborns, admitted to the Neonatal Intensive Care Unit (NICU), are exposed to a large number of medications, the majority of which are not labeled for use in infants, especially in preterm newborns, because clinical trials on their benefits and harms are lacking. There is a huge gap in knowledge on pharmacokinetic (PK) data in sick preterm infants, including that of drug penetration to cerebrospinal fluid (CSF). One of the issues is related to the lack of reliable analytical methods for the measurement of drugs in CSF. Methods: In this paper we describe a specific and sensitive LC–MS/MS method for the simultaneous quantification in CSF of four commonly prescribed drugs in NICUs: caffeine, betamethasone, clonidine and furosemide. Results: The method was validated following EMA guidelines and applied to several CSF samples of preterm infants with post-hemorrhagic ventricular dilatation in which a ventricular access device was applied. The range of the concentrations of the four drugs measured in the CSF was wide. Conclusions: Our method can be considered useful for further clinical studies to describe the PK aspects of these drugs in neonatal medicine

    Development of an Accurate Mass Retention Time Database for Untargeted Metabolomic Analysis and Its Application to Plasma and Urine Pediatric Samples

    No full text
    Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is currently the method of choice for untargeted metabolomic analysis. The availability of established protocols to achieve a high confidence identification of metabolites is crucial. The aim of this work is to describe the workflow that we have applied to build an Accurate Mass Retention Time (AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra, obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded stable retention times. The adopted chromatographic protocol included a gradient separation using a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column. An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification, according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric plasma and urine samples, respectively. This library represents a starting point for future metabolomic studies in pediatric settings

    Development and Validation of a Novel LC-MS/MS Method for a TDM-Guided Personalization of HSCT Conditioning with High-Dose Busulfan in Children

    No full text
    Personalization of busulfan (Bu) exposure via therapeutic drug monitoring (TDM) is recommended for patients treated with high-dose conditioning regimens. Several laboratories’ developed methods are available in the literature with a lack of standardization. The aim of this study is to develop a new standardized LC-MS/MS method and validate it according to the international ICH M10 (EMA) guidelines. Our method is based on rapid protein precipitation from 50 µL plasma followed by separation on a reversed-phase C-18 UHPLC column after the addition of deuterated internal standard and has been tested on real samples from pediatric patients treated with myeloablative conditioning regimens, including Bu, before autologous or allogeneic hematopoietic stem cell transplantation (HSCT). The validated LC-MS/MS method is linear over wide concentration ranges (125–2000 ng/mL), accurate, and reproducible in the absence of matrix effects, allowing for the specific and rapid quantification of Bu and allowing next-dose recommendations to be made in a timely fashion to answer clinicians’ needs. Given the lack of data on the stability of Bu in real clinical samples, stability was assessed both on quality controls and on real samples to set up a robust protocol in real-life conditions. This novel LC-MS/MS method is suitable for application to the TDM-guided personalization of conditioning treatments with high-dose busulfan in pediatric patients undergoing HSCT

    Plasma Levels of Soluble HLA-E and HLA-F at Diagnosis May Predict Overall Survival of Neuroblastoma Patients

    Get PDF
    The purpose of this study was to identify the plasma/serum biomarkers that are able to predict overall survival (OS) of neuroblastoma (NB) patients. Concentration of soluble (s) biomarkers was evaluated in plasma (sHLA-E, sHLA-F, chromogranin, and B7H3) or serum (calprotectin) samples from NB patients or healthy children. The levels of biomarkers that were significantly higher in NB patients were then analyzed considering localized or metastatic subsets. Finally, biomarkers that were significantly different in these two subsets were correlated with patient’s outcome. With the exception of B7H3, levels of all molecules were significantly higher in NB patients than those in controls. However, only chromogranin, sHLA-E, and sHLA-F levels were different between patients with metastatic and localized tumors. sHLA-E and -F levels correlated with each other but not chromogranin. Chromogranin levels correlated with different event-free survival (EFS), whereas sHLA-E and -F levels also correlated with different OS. Association with OS was also detected considering only patients with metastatic disease. In conclusion, low levels of sHLA-E and -F significantly associated with worse EFS/OS in the whole cohort of NB patients and in patients with metastatic NB. Thus, these molecules deserve to be tested in prospective studies to evaluate their predictive power for high-risk NB patients

    A UHPLC–MS/MS Method for Therapeutic Drug Monitoring of Aciclovir and Ganciclovir in Plasma and Dried Plasma Spots

    No full text
    The role of therapeutic drug monitoring (TDM) of valaciclovir (VA)/aciclovir (A) and valganciclovir/ganciclovir (VG/G) in critically ill patients is still a matter of debate. More data on the dose–concentration relationship might therefore be useful, especially in pediatrics where clinical practice is not adequately supported by robust PK studies. We developed and validated a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) micro-method to simultaneously quantify A and G from plasma and dried plasma spots (DPS). The method was based on rapid organic extraction from DPS and separation on a reversed-phase C-18 UHPLC column after addition of deuterated internal standards. Accurate analyte quantification using SRM detection was then obtained using a Thermo Fisher Quantiva triple-quadrupole MS coupled to an Ultimate 3000 UHPLC. It was validated following international (EMA) guidelines for bioanalytical method validation and was tested on samples from pediatric patients treated with A, VG, or G for cytomegalovirus infection following solid organ or hematopoietic stem cell transplantation. Concentrations obtained from plasma and DPS were compared using Passing–Bablok and Bland–Altman statistical tests. The assay was linear over wide concentration ranges (0.01–20 mg/L) in both plasma and DPS for A and G, suitable for the expected therapeutic ranges for both Cmin and Cmax, accurate, and reproducible in the absence of matrix effects. The results obtained from plasma and DPS were comparable. Using an LC-MS/MS method allowed us to obtain a very specific, sensitive, and rapid quantification of these antiviral drugs starting from very low volumes (50 μL) of plasma samples and DPS. The stability of analytes for at least 30 days allows for cost-effective shipment and storage at room temperature. Our method is suitable for TDM and could be helpful for improving knowledge on PK/PD targets of antivirals in critically ill pediatric patients

    A novel LC–MS/MS-based method for the diagnosis of ADA2 deficiency from dried plasma spot

    No full text
    none10noAdenosine Deaminase 2 Deficiency (DADA2) (OMIM: 607575) is a monogenic, autoin-flammatory disease caused by the loss of functional homozygous or heterozygous mutations in the ADA 2 gene (previously CECR1, Cat Eye Syndrome Chromosome Region 1). A timely diagnosis is crucial to start Anti-TNF therapies that are efficacious in controlling the disease. The confirmation of DADA2 is based on DNA sequencing and enzymatic assay. It is, thus, very important to have robust and reliable assays that can be rapidly utilized in specialized laboratories that can centralize samples from other centers. In this paper, we show a novel enzymatic assay based on liquid chromatography-tandem mass spectrometry that allows the accurate determination of the ADA2 enzyme activity starting from very small amounts of plasma spotted on filter paper (dried plasma spot). The method allows significantly distinguishing healthy controls from affected patients and carriers and could be of help in implementing the diagnostic workflow of DADA2.openCafaro A.; Pigliasco F.; Barco S.; Penco F.; Schena F.; Caorsi R.; Volpi S.; Tripodi G.; Gattorno M.; Cangemi G.Cafaro, A.; Pigliasco, F.; Barco, S.; Penco, F.; Schena, F.; Caorsi, R.; Volpi, S.; Tripodi, G.; Gattorno, M.; Cangemi, G

    IL-10 and ARG-1 Concentrations in Bone Marrow and Peripheral Blood of Metastatic Neuroblastoma Patients Do Not Associate with Clinical Outcome

    No full text
    The expression of the immunosuppressive molecules IL-10 and arginase 1 (ARG-1), and of FOXP3 and CD163, as markers of regulatory T cells (Treg) and macrophages, respectively, was evaluated in bone marrow (BM) and peripheral blood (PB) samples collected at diagnosis from patients with metastatic neuroblastoma (NB). IL-10 and ARG-1 plasma concentrations were measured and the association of each parameter with patients’ outcome was tested. The percentages of immunosuppressive Treg and type-1 regulatory (Tr1) cells were also determined. In both BM and PB samples, IL-10 mRNA expression was higher in metastatic NB patients than in controls. IL-10 plasma concentration was higher in patients with NB regardless of stage. Neither IL-10 expression nor IL-10 plasma concentration significantly associated with patient survival. In PB samples from metastatic NB patients, ARG-1 and CD163 expression was higher than in controls but their expression did not associate with survival. Moreover, ARG-1 plasma concentration was lower than in controls, and no association with patient outcome was found. Finally, in metastatic NB patients, the percentage of circulating Treg was higher than in controls, whereas that of Tr1 cells was lower. In conclusion, although IL-10 concentration and Treg percentage were increased, their contribution to the natural history of metastatic NB appears uncertain
    corecore