73 research outputs found

    Predictors of Cervical Cancer Screening among Infrequently Screened Women Completing Human Papillomavirus Self-Collection: My Body My Test-1

    Get PDF
    Background: Approximately one-half of cervical cancer cases in the United States occur in underscreened or never-screened women. We examined predictors to completing Papanicolaou (Pap) testing and whether a positive human papillomavirus (HPV) self-collection result affects Pap testing adherence among underscreened women. Materials and Methods: Low-income women aged 30-65 years who reported no Pap testing in ≥4 years were recruited in North Carolina. Knowledge, attitudes, and barriers regarding cervical cancer and Pap testing were assessed by telephone questionnaires. We mailed self-collection kits for HPV testing and provided information regarding where to obtain affordable Pap testing. Participants received $45 for completing all activities. We used multivariable logistic regression to assess the predictors of longer reported time since last Pap (≥10 vs. 4-9 years) and of completion of Pap testing following study enrollment (follow-up Pap). Results: Participants (n = 230) were primarily black (55%), uninsured (64%), and with ≤high school education (59%). Cost and finding an affordable clinic were the most commonly reported barriers to screening. White women and those with ≤high school education reported longer intervals since last Pap test. Half of the participants reported completing a follow-up Pap test (55%). Women with a positive HPV self-collection were five times more likely to report completing a follow-up Pap test than those with negative self-collection (odds ratio = 5.1, 95% confidence interval 1.4-25.7). Conclusions: Improving awareness of resources for affordable screening could increase cervical cancer screening in underserved women. Home-based HPV self-collection represents an opportunity to re-engage infrequently screened women into preventive screening services

    Preference for Human Papillomavirus Self-Collection and Papanicolaou: Survey of Underscreened Women in North Carolina

    Get PDF
    Objectives Self-collection of samples for human papillomavirus (HPV) testing (self-collection) has the potential to increase cervical cancer screening among underscreened women. We assessed attitudes toward at-home HPV self-collection compared with clinic-based Pap testing in this higher-risk population. Materials and Methods Participants were low-income women in North Carolina overdue for cervical cancer screening. Women self-collected samples at home, returned samples by mail for HPV testing, and completed phone questionnaires about at-home HPV self-collection. Participants were referred to clinic-based Pap testing and invited to complete a second questionnaire about Pap testing. A cross-sectional questionnaire compared attitudes, experiences, and preferences for self-collection versus Pap testing and assessed predictors of preference for HPV self-collection. Results Half (51%) of 221 women reported a preference for HPV self-collection, 19% preferred Pap testing, and 27% reported no preference. More women reported difficulty finding time to do the Pap test (31%) than the self-test (13%, p =.003) and being afraid of the self-test results (50%) than the Pap test results (36%, p =.02). There were relatively fewer reports of physical discomfort and pain from self-collection than Pap testing (discomfort: 18% self; 48% Pap; pain: 8% self; 30% Pap, p =.001). No differences were found in positive versus negative thoughts about the tests, trust in the tests' safety and accuracy, or willingness to do tests again. Conclusions Overall positive attitudes toward HPV self-collection compared with Pap testing among underscreened women suggest that self-collection is a promising option to increase cervical cancer screening in this high-risk population

    Recruitment strategies and HPV self-collection return rates for under-screened women for cervical cancer prevention

    Get PDF
    In the United States, medically underserved women carry a heavier burden of cancer incidence and mortality, yet are largely underrepresented in cancer prevention studies. My Body, My Test is a n observational cohort, multi-phase cervical cancer prevention study in North Carolina that recruited low-income women, aged 30–65 years and who had not undergone Pap testing in ≥ 4 years. Participants were offered home-based self-collection of cervico-vaginal samples for primary HPV testing. Here, we aimed to describe the recruitment strategies utilized by study staff, and the resulting recruitment and self-collection kit return rates for each specific recruitment strategy. Participants were recruited through different approaches: either direct (active, staff-effort intensive) or indirect (passive on the part of study staff). Of a total of 1,475 individuals screened for eligibility, 695 were eligible (47.1%) and 487 (70% of eligible) participants returned their self-collection kit. Small media recruitment resulted in the highest number of individuals found to be study eligible, with a relatively high self-collection kit return of 70%. In-clinic in-reach resulted in a lower number of study-eligible women, yet had the highest kit return rate (90%) among those sent kits. In contrast, 211 recruitment which resulted in the lowest kit return of 54%. Small media, word of mouth, and face-to-face outreach resulted in self-collection kit return rates ranging from 72 to 79%. The recruitment strategies undertaken by study staff support the continued study of reaching under-screened populations into cervical cancer prevention studies

    Mysterious Dust-emitting Object Orbiting TIC 400799224

    Get PDF
    We report the discovery of a unique object of uncertain nature - but quite possibly a disintegrating asteroid or minor planet - orbiting one star of the widely separated binary TIC 400799224. We initially identified the system in data from TESS Sector 10 via an abnormally shaped fading event in the light curve (hereafter "dips"). Follow-up speckle imaging determined that TIC 400799224 is actually two stars of similar brightness at 0.″62 separation, forming a likely bound binary with projected separation of ∼300 au. We cannot yet determine which star in the binary is host to the dips in flux. ASAS-SN and Evryscope archival data show that there is a strong periodicity of the dips at ∼19.77 days, leading us to believe that an occulting object is orbiting the host star, though the duration, depth, and shape of the dips vary substantially. Statistical analysis of the ASAS-SN data shows that the dips only occur sporadically at a detectable threshold in approximately one out of every three to five transits, lending credence to the possibility that the occulter is a sporadically emitted dust cloud. The cloud is also fairly optically thick, blocking up to 37% or 75% of the light from the host star, depending on the true host. Further observations may allow for greater detail to be gleaned as to the origin and composition of the occulter, as well as to a determination of which of the two stars comprising TIC 400799224 is the true host star of the dips

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Thresholds for adding degraded tropical forest to the conservation estate

    Get PDF
    Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked
    corecore