4,982 research outputs found

    Carcinoma of the Stomach

    Get PDF
    Abstract Not Provided

    The Incidence of Cancer

    Get PDF
    1. The crude mortality rates due to cancer in Scotland, Glasgow and the province of Saskatchewan are presented. 2. The practice of using crude mortality rates as an indication of the incidence of cancer is discussed and condemned. 3. A method of correcting the crude mortality rate for over- and under-diagnosis of cancer is presented. 4. The crude incidence of cancer in Saskatchewan has been calculated using all the sources of information available in that province. 5. The age distribution of cancer in Saskatchewan is presented

    Supersymmetric quantum mechanics based on higher excited states

    Full text link
    We generalize the formalism and the techniques of the supersymmetric (susy) quantum mechanics to the cases where the superpotential is generated/defined by higher excited eigenstates. The generalization is technically almost straightforward but physically quite nontrivial since it yields an infinity of new classes of susy-partner potentials, whose spectra are exactly identical except for the lowest m+1 states, if the superpotential is defined in terms of the (m+1)-st eigenfunction, with m=0 reserved for the ground state. It is shown that in case of the infinite 1-dim potential well nothing new emerges (the partner potential is still of P\"oschl-Teller type I, for all m), whilst in case of the 1-dim harmonic oscillator we get a new class of infinitely many partner potentials: for each m the partner potential is expressed as the sum of the quadratic harmonic potential plus rational function, defined as the derivative of the ratio of two consecutive Hermite polynomials. These partner potentials of course have m singularities exactly at the locations of the nodes of the generating (m+1)-st wavefunction. The susy formalism applies everywhere between the singularities. A systematic application of the formalism to other potentials with known spectra would yield an infinitely rich class of "solvable" potentials, in terms of their partner potentials. If the potentials are shape invariant they can be solved at least partially and new types of analytically obtainable spectra are expected. PACS numbers: 03.65.-w, 03.65.Ge, 03.65.SqComment: 15 pages LaTeX file, no figures, submitted to J. Phys. A: accepted for publication
    corecore