81 research outputs found

    Genomic and proteomic profiling of responses to toxic metals in human lung cells.

    Get PDF
    Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 M Cd(II) (as cadmium chloride), 10 M Cr(VI) (as sodium dichromate), 3 g/cm2 Ni(II) (as nickel subsulfide), 5 M or 50 M As(III) (as sodium arsenite), or 1 M MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 M), As (50 M), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hsp90), and no gene overlapped among all five treatments. We also compared low-dose (5 M, noncytotoxic) and high-dose (50 M, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses

    Arsenic stimulates sinusoidal endothelial cell capillarization and vessel remodeling in mouse liver

    Get PDF
    Trivalent arsenic [As(III)] is a well-known environmental toxicant that causes a wide range of organ-specific diseases and cancers. In the human liver, As(III) promotes vascular remodeling, portal fibrosis, and hypertension, but the pathogenesis of these As(III)-induced vascular changes is unknown. To investigate the hypothesis that As(III) targets the hepatic endothelium to initiate pathogenic change, mice were exposed to 0 or 250 parts per billion (ppb) of As(III) in their drinking water for 5 weeks. Arsenic(III) exposure did not affect the overall health of the animals, the general structure of the liver, or hepatocyte morphology. There was no change in the total tissue arsenic levels, indicating that arsenic does not accumulate in the liver at this level of exposure. However, there was significant vascular remodeling with increased sinusoidal endothelial cell (SEC) capillarization, vascularization of the peribiliary vascular plexus (PBVP), and constriction of hepatic arterioles in As(III)-exposed mice. In addition to ultrastructural demonstration of SEC defenestration and capillarization, quantitative immunofluorescence analysis revealed increased sinusoidal PECAM-1 and laminin-1 protein expression, suggesting gain of adherens junctions and a basement membrane. Conversion of SECs to a capillarized, dedifferentiated endothelium was confirmed at the cellular level with demonstration of increased caveolin-1 expression and SEC caveolae, as well as increased membrane-bound Rac1-GTPase

    Millicurrent stimulation of human articular chondrocytes cultivated in a collagen type-I gel and of human osteochondral explants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Here we investigate the effect of millicurrent treatment on human chondrocytes cultivated in a collagen gel matrix and on human osteochondral explants.</p> <p>Methods</p> <p>Human chondrocytes from osteoarthritic knee joints were enzymatically released and transferred into a collagen type-I gel. Osteochondral explants and cell-seeded gel samples were cultivated in-vitro for three weeks. Samples of the verum groups were stimulated every two days by millicurrent treatment (3 mA, sinusoidal signal of 312 Hz amplitude modulated by two super-imposed signals of 0.28 Hz), while control samples remained unaffected. After recovery, collagen type-I, type-II, aggrecan, interleukin-1β, IL-6, TNFα and MMP13 were examined by immunohistochemistry and by real time PCR.</p> <p>Results</p> <p>With regard to the immunostainings 3 D gel samples and osteochondral explants did not show any differences between treatment and control group. The expression of all investigated genes of the 3 D gel samples was elevated following millicurrent treatment. While osteochondral explant gene expression of col-I, col-II and Il-1β was nearly unaffected, aggrecan gene expression was elevated. Following millicurrent treatment, IL-6, TNFα, and MMP13 gene expression decreased. In general, the standard deviations of the gene expression data were high, resulting in rarely significant results.</p> <p>Conclusions</p> <p>We conclude that millicurrent stimulation of human osteoarthritic chondrocytes cultivated in a 3 D collagen gel and of osteochondral explants directly influences cell metabolism.</p

    The Werner Syndrome Protein Suppresses Telomeric Instability Caused by Chromium (VI) Induced DNA Replication Stress

    Get PDF
    Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration

    Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos

    Get PDF
    Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis

    Arsenic and Cardiovascular Disease

    No full text
    corecore