4,199 research outputs found

    On the emergence of random initial conditions in fluid limits

    Full text link
    The paper presents a phenomenon occurring in population processes that start near zero and have large carrying capacity. By the classical result of Kurtz~(1970), such processes, normalized by the carrying capacity, converge on finite intervals to the solutions of ordinary differential equations, also known as the fluid limit. When the initial population is small relative to carrying capacity, this limit is trivial. Here we show that, viewed at suitably chosen times increasing to infinity, the process converges to the fluid limit, governed by the same dynamics, but with a random initial condition. This random initial condition is related to the martingale limit of an associated linear birth and death process

    Interacting vector fields in Relativity without Relativity

    Get PDF
    Barbour, Foster and \'{O} Murchadha have recently developed a new framework, called here {\it{the 3-space approach}}, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of 3-dimensional metric--matter configurations. In fact gravity, the universal light cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity -- and more -- without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang--Mills fields minimally coupled to gravity.Comment: Replaced with final version accepted by Classical and Quantum Gravity (14 pages, no figures

    The geometry of the Barbour-Bertotti theories I. The reduction process

    Get PDF
    The dynamics of N3N\geq 3 interacting particles is investigated in the non-relativistic context of the Barbour-Bertotti theories. The reduction process on this constrained system yields a Lagrangian in the form of a Riemannian line element. The involved metric, degenerate in the flat configuration space, is the first fundamental form of the space of orbits of translations and rotations (the Leibniz group). The Riemann tensor and the scalar curvature are computed by a generalized Gauss formula in terms of the vorticity tensors of generators of the rotations. The curvature scalar is further given in terms of the principal moments of inertia of the system. Line configurations are singular for N3N\neq 3. A comparison with similar methods in molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit

    Towards the Unification of Gravity and other Interactions: What has been Missed?

    Full text link
    Faced with the persisting problem of the unification of gravity with other fundamental interactions we investigate the possibility of a new paradigm, according to which the basic space of physics is a multidimensional space C{\cal C} associated with matter configurations. We consider general relativity in C{\cal C}. In spacetime, which is a 4-dimensional subspace of C{\cal C}, we have not only the 4-dimensional gravity, but also other interactions, just as in Kaluza-Klein theories. We then consider a finite dimensional description of extended objects in terms of the center of mass, area, and volume degrees of freedom, which altogether form a 16-dimensional manifold whose tangent space at any point is Clifford algebra Cl(1,3). The latter algebra is very promising for the unification, and it provides description of fermions.Comment: 11 pages; Talk presented at "First Mediterranean Conference on Classical and Quantum Gravity", Kolymbari, Crete, Greece, 14-18 September 200

    A revision of the Mexican cyprinid fish genus Algansea

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56399/1/MP155.pd

    Poisson approximations for the Ising model

    Full text link
    A dd-dimensional Ising model on a lattice torus is considered. As the size nn of the lattice tends to infinity, a Poisson approximation is given for the distribution of the number of copies in the lattice of any given local configuration, provided the magnetic field a=a(n)a=a(n) tends to -\infty and the pair potential bb remains fixed. Using the Stein-Chen method, a bound is given for the total variation error in the ferromagnetic case.Comment: 25 pages, 1 figur

    A law of large numbers approximation for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for rather general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted 1\ell_1 norm.Comment: revised version in response to referee comments, 34 page

    Emergent Semiclassical Time in Quantum Gravity. I. Mechanical Models

    Get PDF
    Strategies intended to resolve the problem of time in quantum gravity by means of emergent or hidden timefunctions are considered in the arena of relational particle toy models. In situations with `heavy' and `light' degrees of freedom, two notions of emergent semiclassical WKB time emerge; these are furthermore equivalent to two notions of emergent classical `Leibniz--Mach--Barbour' time. I futhermore study the semiclassical approach, in a geometric phase formalism, extended to include linear constraints, and with particular care to make explicit those approximations and assumptions used. I propose a new iterative scheme for this in the cosmologically-motivated case with one heavy degree of freedom. I find that the usual semiclassical quantum cosmology emergence of time comes hand in hand with the emergence of other qualitatively significant terms, including back-reactions on the heavy subsystem and second time derivatives. I illustrate my analysis by taking it further for relational particle models with linearly-coupled harmonic oscillator potentials. As these examples are exactly soluble by means outside the semiclassical approach, they are additionally useful for testing the justifiability of some of the approximations and assumptions habitually made in the semiclassical approach to quantum cosmology. Finally, I contrast the emergent semiclassical timefunction with its hidden dilational Euler time counterpart.Comment: References Update

    New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split

    Full text link
    I show how there is an ambiguity in how one treats auxiliary variables in gauge theories including general relativity cast as 3 + 1 geometrodynamics. Auxiliary variables may be treated pre-variationally as multiplier coordinates or as the velocities corresponding to cyclic coordinates. The latter treatment works through the physical meaninglessness of auxiliary variables' values applying also to the end points (or end spatial hypersurfaces) of the variation, so that these are free rather than fixed. [This is also known as variation with natural boundary conditions.] Further principles of dynamics workings such as Routhian reduction and the Dirac procedure are shown to have parallel counterparts for this new formalism. One advantage of the new scheme is that the corresponding actions are more manifestly relational. While the electric potential is usually regarded as a multiplier coordinate and Arnowitt, Deser and Misner have regarded the lapse and shift likewise, this paper's scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose corresponding velocities are, respectively, the abovementioned previously used variables. This paper's way of thinking about gauge theory furthermore admits interesting generalizations, which shall be provided in a second paper.Comment: 11 page

    The Definition of Mach's Principle

    Full text link
    Two definitions of Mach's principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to Peter Mittelstaedt's 80th Birthday Festschrift. 30 page
    corecore