12,868 research outputs found
The Physical State of the Intergalactic Medium or Can We Measure Y?
We present an argument for a {\it lower limit} to the Compton- parameter
describing spectral distortions of the cosmic microwave background (CMB). The
absence of a detectable Gunn-Peterson signal in the spectra of high redshift
quasars demands a high ionization state of the intergalactic medium (IGM).
Given an ionizing flux at the lower end of the range indicated by the proximity
effect, an IGM representing a significant fraction of the
nucleosynthesis-predicted baryon density must be heated by sources other than
the photon flux to a temperature \go {\rm few} \times 10^5\, K. Such a gas at
the redshift of the highest observed quasars, , will produce a y\go
10^{-6}. This lower limit on rises if the Universe is open, if there is a
cosmological constant, or if one adopts an IGM with a density larger than the
prediction of standard Big Bang nucleosynthesis.Comment: Proceedings of `Unveiling the Cosmic Infrared Background', April
23-25, 1995, Maryland. Self-unpacking uuencoded, compressed tar file with two
figures include
The solar siblings in the Gaia era
We perform realistic simulations of the Sun's birth cluster in order to
predict the current distribution of solar siblings in the Galaxy. We study the
possibility of finding the solar siblings in the Gaia catalogue by using only
positional and kinematic information. We find that the number of solar siblings
predicted to be observed by Gaia will be around 100 in the most optimistic
case, and that a phase space only search in the Gaia catalogue will be
extremely difficult. It is therefore mandatory to combine the chemical tagging
technique with phase space selection criteria in order to have any hope of
finding the solar siblings.Comment: To be published in the proceedings of the GREAT-ITN conference "The
Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases", 1-5
December 2014, University of Barcelona, Spain, EAS Publications Series, eds
Nicholas Walton, Francesca Figueras, and Caroline Soubira
Kinematics of a Spacetime with an Infinite Cosmological Constant
A solution of the sourceless Einstein's equation with an infinite value for
the cosmological constant \Lambda is discussed by using Inonu-Wigner
contractions of the de Sitter groups and spaces. When \Lambda --> infinity,
spacetime becomes a four-dimensional cone, dual to Minkowski space by a
spacetime inversion. This inversion relates the four-cone vertex to the
infinity of Minkowski space, and the four-cone infinity to the Minkowski
light-cone. The non-relativistic limit c --> infinity is further considered,
the kinematical group in this case being a modified Galilei group in which the
space and time translations are replaced by the non-relativistic limits of the
corresponding proper conformal transformations. This group presents the same
abstract Lie algebra as the Galilei group and can be named the conformal
Galilei group. The results may be of interest to the early Universe Cosmology.Comment: RevTex, 7 pages, no figures. Presentation changes, including a new
Title. Version to appear in Found. Phys. Let
- …