21 research outputs found

    The C-terminal region of the human p23 chaperone modulates its structure and function

    No full text
    The p23 protein is a chaperone widely involved in protein homeostasis, well known as an Hsp90 co-chaperone since it also controls the Hsp90 chaperone cycle. Human p23 includes a β-sheet domain, responsible for interacting with Hsp90; and a charged C-terminal region whose function is not clear, but seems to be natively unfolded. p23 can undergo caspase-dependent proteolytic cleavage to form p19 (p231-142), which is involved in apoptosis, while p23 has anti-apoptotic activity. To better elucidate the function of the human p23 C-terminal region, we studied comparatively the full-length human p23 and three C-terminal truncation mutants: p231-117; p231-131 and p231-142. Our data indicate that p23 and p19 have distinct characteristics, whereas the other two truncations behave similarly, with some differences to p23 and p19. We found that part of the C-terminal region can fold in an α-helix conformation and slightly contributes to p23 thermal-stability, suggesting that the C-terminal interacts with the β-sheet domain. As a whole, our results suggest that the C-terminal region of p23 is critical for its structure-function relationship. A mechanism where the human p23 C-terminal region behaves as an activation/inhibition module for different p23 activities is proposed.The p23 protein is a chaperone widely involved in protein homeostasis, well known as an Hsp90 co-chaperone since it also controls the Hsp90 chaperone cycle. Human p23 includes a β-sheet domain, responsible for interacting with Hsp90; and a charged C-termi5655767FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2011/23110-0; 2012/50161-8SEM INFORMAÇÃOEchtenkamp, F.J., Freeman, B.C., (2014) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation, pp. 207-232. , W.A. Houry, Springer New YorkJohnson, J.L., Toft, D.O., (1994) J. Biol. Chem., 269, pp. 24989-24993Johnson, J.L., Beito, T.G., Krco, C.J., Toft, D.O., (1994) Mol. Cell. Biol., 14, pp. 1956-1963Johnson, J.L., Toft, D.O., (1995) Mol. Endocrinol., 9, pp. 670-678Felts, S.J., Toft, D.O., (2003) Cell Stress Chaperon, 8, pp. 108-113Echtenkamp, F.J., Zelin, E., Oxelmark, E., Woo, J.I., Andrews, B.J., Garabedian, M., Freeman, B.C., (2011) Mol. Cell, 43, pp. 229-241Kobayashi, T., Nakatani, Y., Tanioka, T., Tsujimoto, M., Nakajo, S., Nakaya, K., Murakami, M., Kudo, I., (2004) Biochem. J., 381, pp. 59-69Tanioka, T., Nakatani, Y., Semmyo, N., Murakami, M., Kudo, I., (2000) J. Biol. Chem., 275, pp. 32775-32782Rao, R.V., Niazi, K., Mollahan, P., Mao, X., Crippen, D., Poksay, K.S., Chen, S., Bredesen, D.E., (2006) Cell Death Differ., 13, pp. 415-425Gausdal, G., Gjertsen, B.T., Fladmark, K.E., Demol, H., Vandekerckhove, J., Doskeland, S.O., (2004) Leukemia, 18, pp. 1989-1996Mollerup, J., Berchtold, M.W., (2005) FEBS Lett., 579, pp. 4187-4192Weaver, A.J., Sullivan, W.P., Felts, S.J., Owen, B.A.L., Toft, D.O., (2000) J. Biol. Chem., 275, pp. 23045-23052Weikl, T., Abelmann, K., Buchner, J., (1999) J. Mol. Biol., 293, pp. 685-691Forafonov, F., Toogun, O.A., Grad, I., Suslova, E., Freeman, B.C., Picard, D., (2008) Mol. Cell. Biol., 28, pp. 3446-3456Martinez-Yamout, M.A., Venkitakrishnan, R.P., Preece, N.E., Kroon, G., Wright, P.E., Dyson, H.J., (2006) J. Biol. Chem., 281, pp. 14457-14464Bose, S., Weikl, T., Bugl, H., Buchner, J., (1996) Science, 274, pp. 1715-1717Freeman, B.C., Toft, D.O., Morimoto, R.I., (1996) Science, 274, pp. 1718-1720Neckers, L., (2007) J. Biosci., 32, pp. 517-530Gava, L.M., Ramos, C.H.I., (2009) Curr. Chem. Biol., 3, pp. 10-21Da Silva, V.C.H., Ramos, C.H.I., (2012) J. Proteomics, 75, pp. 2790-2802Simpson, N.E., Lambert, W.M., Watkins, R., Giashuddin, S., Huang, S.J., Oxelmark, E., Arju, R., Garabedian, M.J., (2010) Cancer Res., 70, pp. 8446-8456Young, J.C., Hartl, F.U., (2000) EMBO J., 19, pp. 5930-5940Panaretou, B., Siligardi, G., Meyer, P., Maloney, A., Sullivan, J.K., Singh, S., Millson, S.H., Prodromou, C., (2002) Mol. Cell, 10, pp. 1307-1318Richter, K., Walter, S., Buchner, J., (2004) J. Mol. Biol., 342, pp. 1403-1413Ali, M.M.U., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., Prodromou, C., Pearl, L.H., (2006) Nature, 440, pp. 1013-1017Stebbins, C.E., Russo, A.A., Schneider, C., Rosen, N., Hartl, F.U., Pavletich, N.P., (1997) Cell, 89, pp. 239-250Hohfeld, J., Cyr, D.M., Patterson, C., (2001) EMBO Rep., 2, pp. 885-890Pearl, L.H., Prodromou, C., (2002) Adv. Protein Chem., 59, pp. 157-186Bohen, S.P., (1998) Mol. Biol. Cell, 18, pp. 3330-3339Grad, I., McKee, T.A., Ludwig, S.M., Hoyle, G.W., Ruiz, P., Wurst, W., Floss, T., Picard, D., (2006) Mol. Cell. Biol., 26, pp. 8976-8983Toogun, O.A., Zeiger, W., Freeman, B.C., (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 5765-5770Woo, S.H., An, S., Lee, H.C., Jin, H.O., Seo, S.K., Yoo, D.H., Lee, K.H., Park, I.C., (2009) J. Biol. Chem., 284, pp. 30871-30880Tosoni, K., Costa, A., Sarno, S., (2011) Mol. Cell. Biochem., 356, pp. 245-254Poksay, K., Banwait, S., Crippen, D., Mao, X., Bredesen, D., Rao, R., (2011) J. Mol. Neurosci., pp. 1-12Patwardhan, C.A., Fauq, A., Peterson, L.B., Miller, C., Blagg, B.S.J., Chadli, A., (2013) J. Biol. Chem., 288, pp. 7313-7325Deleage, G., Combet, C., Blanchet, C., Geourjon, C., (2001) Comput. Biol. Med., 31, pp. 259-267Elble, R., (1992) Biotechniques, 13, pp. 18-20Oldenburg, K.R., Vo, K.T., Michaelis, S., Paddon, C., (1997) Nucleic Acids Res., 25, pp. 451-452Kroll, E.S., Hyland, K.M., Hieter, P., Li, J.J., (1996) Genetics, 143, pp. 95-102Kushnirov, V.V., (2000) Yeast, 16, pp. 857-860Corrêa, D.H.A., Ramos, C.H.I., (2009) Afr. J. Biochem. Res., 3, pp. 164-173Schuck, P., (2000) Biophys. J., 78, pp. 1606-1619Borges, J.C., Ramos, C.H.I., (2011) Curr. Med. Chem., 18, pp. 1276-1285Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J., Svergun, D.I., (2003) J. Appl. Crystallogr., 36, pp. 1277-1282Semenyuk, A.V., Svergun, D.I., (1991) J. Appl. Crystallogr., 24, pp. 537-540Svergun, D.I., (1992) J. Appl. Crystallogr., 25, pp. 495-503Blom, N., Gammeltoft, S., Brunak, S., (1999) J. Mol. Biol., 294, pp. 1351-1362Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., Mann, M., (2006) Cell, 127, pp. 635-648McLaughlin, S.H., Sobott, F., Yaol, Z.P., Zhang, W., Nielsen, P.R., Grossmann, J.G., Laue, E.D., Jackson, S.E., (2006) J. Mol. Biol., 356, pp. 746-758Karagoz, G.E., Duarte, A.M.S., Ippel, H., Uetrecht, C., Sinnige, T., Van Rosmalen, M., Hausmann, J., Rudiger, S.G.D., (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 580-585Trudeau, T., Nassar, R., Cumberworth, A., Wong, E.T., Woollard, G., Gsponer, J., (2013) Structure, 21, pp. 332-341Song, D., Li, L.S., Arsenault, P.R., Tan, Q., Bigham, A.W., Heaton-Johnson, K.J., Master, S.R., Lee, F.S., (2014) J. Biol. Chem.CHIR, JCB and LRSB are CNPq Research Fellows and thank FAPESP – Brazil (2011/23110-0; 2012/50161-8) and CNPq – Brazil for financial support. We thank the LNBio/CNPEM-ABTLuS (Campinas, Brazil) for making the AUC device available. We also thank the LNLS/CN

    Revealing the interaction mode of the highly flexible Sorghum bicolor Hsp70/Hsp90 organizing protein (Hop) : a conserved carboxylate clamp confers high affinity binding to Hsp90

    No full text
    Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated191191201CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP305018/2015-9; 306943/2015-888887.125517/2016-002012/50161-8; 2014/17264-3; 2015/15822-1This study was funded by Fundação de Amparo do Estado de São Paulo FAPESP (2012/50161-8, 2014/17264-3 and 2015/15822-1), CNPq (305018/2015-9 and 306943/2015-8) and CAPES (88887.125517/2016-00). We thank the National Laboratory of Synchrotron Light (Campinas, SP, Brazil) and its staff for the use of SAXS beam line facilities. We acknowledge the Protein Analysis Facility (Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Switzerland) for cross-linking MS dat
    corecore