72 research outputs found

    Universal extra dimensions and Z->b bar-b

    Get PDF
    We study, at the one loop level, the dominant contributions from a single universal extra dimension to the process (Z\to b\bar{b}). By resorting to the gaugeless limit of the theory we explain why the result is expected to display a strong dependence on the mass of the top-quark, not identified in the early literature. A detailed calculation corroborates this expectation, giving rise to a lower bound for the compactification scale which is comparable to that obtained from the ρ\rho parameter. An estimate of the subleading corrections is furnished, together with a qualitative discussion on the difference between the present results and those derived previously for the non-universal case.Comment: 16 pages, 4 figures, revtex

    Gluino Pair Production at Linear e^+e^- Colliders

    Get PDF
    We study the potential of high-energy linear e+e−e^+e^- colliders for the production of gluino pairs within the Minimal Supersymmetric Standard Model (MSSM). In this model, the process e+e−→g~g~e^+e^-\to\tilde{g}\tilde{g} is mediated by quark/squark loops, dominantly of the third generation, where the mixing of left- and right-handed states can become large. Taking into account realistic beam polarization effects, photon and Z0Z^0-boson exchange, and current mass exclusion limits, we scan the MSSM parameter space for various e+e−e^+e^- center-of-mass energies to determine the regions, where gluino production should be visible.Comment: 22 pages, 9 figure

    Meson exchange currents in electromagnetic one-nucleon emission

    Get PDF
    The role of meson exchange currents (MEC) in electron- and photon-induced one-nucleon emission processes is studied in a nonrelativistic model including correlations and final state interactions. The nuclear current is the sum of a one-body and of a two-body part. The two-body current includes pion seagull, pion-in-flight and the isobar current contributions. Numerical results are presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC effects are in general rather small in (e,e'p), while in (\gamma,p) they are always large and important to obtain a consistent description of (e,e'p) and (\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p) cross sections are sensitive to short-range correlations at high values of the recoil momentum, where MEC effects are larger and overwhelm the contribution of correlations.Comment: 9 pages, 6 figure

    Novel Approach to Confront Electroweak Data and Theory

    Get PDF
    A novel approach to study electroweak physics at one-loop level in generic SU(2)L×U(1)Y{\rm SU(2)_L \times U(1)_Y} theories is introduced. It separates the 1-loop corrections into two pieces: process specific ones from vertex and box contributions, and universal ones from contributions to the gauge boson propagators. The latter are parametrized in terms of four effective form factors eˉ2(q2)\bar{e}^2(q^2), sˉ2(q2)\bar{s}^2(q^2), gˉZ2(q2)\bar{g}_Z^2(q^2) and gˉW2(q2)\bar{g}_W^2 (q^2) corresponding to the γγ\gamma\gamma, γZ\gamma Z, ZZZZ and WWWW propagators. Under the assumption that only the Standard Model contributes to the process specific corrections, the magnitudes of the four form factors are determined at q2=0q^2=0 and at q^2=\mmz by fitting to all available precision experiments. These values are then compared systematically with predictions of SU(2)L×U(1)Y{\rm SU(2)_L \times U(1)_Y} theories. In all fits \alpha_s(\mz) and \bar{\alpha}(\mmz) are treated as external parameters in order to keep the interpretation as flexible as possible. The treatment of the electroweak data is presented in detail together with the relevant theoretical formulae used to interpret the data. No deviation from the Standard Model has been identified. Ranges of the top quark and Higgs boson masses are derived as functions of \alpha_s(\mz) and \bar{\alpha}(\mmz). Also discussed are consequences of the recent precision measurement of the left-right asymmetry at SLC as well as the impact of a top quark mass and an improved WW mass measurement.Comment: 123 pages, LaTeX (33 figures available via anonymous ftp), KEK-TH-375, KEK preprint 93-159, KANAZAWA-94-19, DESY 94-002, YUMS 94-22, SNUTP 94-82, to be published in Z.Phys.

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass ∌1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Primordial Nucleosynthesis Constraints on Z' Properties

    Get PDF
    In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry often prevents the generation of Majorana masses needed for a conventional neutrino seesaw, leading to three superweakly interacting ``right-handed'' neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be produced prior to big bang nucleosynthesis by the Z' interactions, leading to a faster expansion rate and too much ^4He. We quantify the constraints on the Z' properties from nucleosynthesis for Z' couplings motivated by a class of E_6 models parametrized by an angle theta_E6. The rate for the annihilation of three approximately massless right-handed neutrinos into other particle pairs through the Z' channel is calculated. The decoupling temperature, which is higher than that of ordinary left-handed neutrinos due to the large Z' mass, is evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is obtained numerically as a function of the Z' mass and couplings for a variety of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition temperature T_c. Except near the values of theta_E6 for which the Z' decouples from the right-handed neutrinos, the Z' mass and mixing constraints from nucleosynthesis are much more stringent than the existing laboratory limits from searches for direct production or from precision electroweak data, and are comparable to the ranges that may ultimately be probed at proposed colliders. For the case T_c = 150 MeV with the theoretically favored range of Z-Z' mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger mixing or larger T_c often lead to unacceptably large Delta N_nu except near the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde

    New Physics Contribution to Neutral Trilinear Gauge Boson Couplings

    Full text link
    We study the one loop new physics effects to the CP even triple neutral gauge boson vertices γ⋆γZ\gamma^\star \gamma Z, γ⋆ZZ\gamma^\star Z Z, Z⋆ZγZ^\star Z \gamma and Z⋆ZZZ^\star Z Z in the context of Little Higgs models. We compute the contribution of the additional fermions in Littles Higgs model in the framework of direct product groups where [SU(2)×U(1)]2[SU(2)\times U(1)]^2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of simple group where SU(N)×U(1)SU(N)\times U(1) gauge symmetry breaks down to SU(2)L×U(1)SU(2)_L\times U(1). We calculate the contribution of the fermions to these couplings when TT parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a' and compare with the SM and Little Higgs models.Comment: 19 pages, 5 figures, 3 table

    Degenerate BESS Model: The possibility of a low energy strong electroweak sector

    Get PDF
    We discuss possible symmetries of effective theories describing spinless and spin 1 bosons, mainly to concentrate on an intriguing phenomenological possibility: that of a hardly noticeable strong electroweak sector at relatively low energies. Specifically, a model with both vector and axial vector strong interacting bosons may possess a discrete symmetry imposing degeneracy of the two sets of bosons (degenerate BESS model). In such a case its effects at low energies become almost invisible and the model easily passes all low energy precision tests. The reason lies essentially in the fact that the model automatically satisfies decoupling, contrary to models with only vectors. For large mass of the degenerate spin one bosons the model becomes identical at the classical level to the standard model taken in the limit of infinite Higgs mass. For these reasons we have thought it worthwhile to fully develop the model, together with its possible generalizations, and to study the expected phenomenology. For instance, just because of its invisibility at low energy, it is conceivable that degenerate BESS has low mass spin one states and gives quite visible signals at existing or forthcoming accelerators.Comment: 37 pages, LaTeX, 14 figures (uuencoded

    Update of the Search for the Neutrinoless Decay Ï„â†’ÎŒÎł\tau\to \mu\gamma

    Full text link
    We present an update of the search for the lepton family number violating decay Ï„â†’ÎŒÎł\tau \to \mu\gamma using a complete CLEO II data sample of 12.6 million τ+τ−\tau^+\tau^- pairs. No evidence of a signal has been found and the corresponding upper limit is \BR(\tau \to \mu\gamma) < 1.0 \times 10^{-6} at 90% CL, significantly smaller than previous limits. All quoted results are preliminary.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    • 

    corecore