244 research outputs found
Experimental Constraints on Heavy Fermions in Higgsless Models
Using an effective Lagrangian approach we analyze a generic Higgsless model
with composite heavy fermions, transforming as SU(2)_{L+R} Doublets. Assuming
that the Standard Model fermions acquire mass through mixing with the new heavy
fermions, we constrain the free parameters of the effective Lagrangian studying
Flavour Changing Neutral Current processes. In so doing we obtain bounds that
can be applied to a wide range of models characterized by the same fermion
mixing hypothesis.Comment: 23 pages, 10 figure
Top quark effects in composite vector pair production at the LHC
In the context of a strongly coupled Electroweak Symmetry Breaking, composite
light scalar singlet and composite triplet of heavy vectors may arise from an
unspecified strong dynamics and the interactions among themselves and with the
Standard Model gauge bosons and fermions can be described by a Effective Chiral Lagrangian. In this framework, the
production of the and final states at the LHC by
gluon fusion mechanism is studied in the region of parameter space consistent
with the unitarity constraints in the elastic channel of longitudinal gauge
boson scattering and in the inelastic scattering of two longitudinal Standard
Model gauge bosons into Standard Model fermions pairs. The expected rates of
same-sign di-lepton and tri-lepton events from the decay of the
final state are computed and their corresponding backgrounds are estimated. It
is of remarkable relevance that the final state can only be
produced at the LHC via gluon fusion mechanism since this state is absent in
the Drell-Yan process. It is also found that the final state
production cross section via gluon fusion mechanism is comparable with the
Drell-Yan production cross section. The comparison of the
and total cross sections will be crucial for
distinguishing the different models since the vector pair production is
sensitive to many couplings. This will also be useful to determine if the heavy
vectors are only composite vectors or are gauge vectors of a spontaneously
broken gauge symmetry.Comment: 18 pages, 5 tables, 6 figures. Missing figures added. Matches
published versio
Minimal Composite Higgs Model with Light Bosons
We analyze a composite Higgs model with the minimal content that allows a
light Standard-Model-like Higgs boson, potentially just above the current LEP
limit. The Higgs boson is a bound state made up of the top quark and a heavy
vector-like quark. The model predicts that only one other bound state may be
lighter than the electroweak scale, namely a CP-odd neutral scalar. Several
other composite scalars are expected to have masses in the TeV range. If the
Higgs decay into a pair of CP-odd scalars is kinematically open, then this
decay mode is dominant, with important implications for Higgs searches. The
lower bound on the CP-odd scalar mass is loose, in some cases as low as
100 MeV, being set only by astrophysical constraints.Comment: 33 pages, latex. Corrections in eqs. 3.21, 3.23, 4.1, 4.5-10. One
figure adde
Strong tree level unitarity violations in the extra dimensional Standard Model with scalars in the bulk
We show how the tree level unitarity violations of compactified extra
dimensional extensions of the Standard Model become much stronger when the
scalar sector is included in the bulk. This effect occurs when the couplings
are not suppressed for larger Kaluza-Klein levels, and could have relevant
consequences for the phenomenology of the next generation of colliders. We also
introduce a simple and generic formalism to obtain unitarity bounds for finite
energies, taking into account coupled channels including the towers of
Kaluza-Klein excitations.Comment: Version to appear in Phys. Rev. D Typos corrected and remarks added
to clarify figure
A "Littlest Higgs" Model with Custodial SU(2) Symmetry
In this note, a ``littlest higgs'' model is presented which has an
approximate custodial SU(2) symmetry. The model is based on the coset space
. The light pseudo-goldstone bosons of the theory
include a {\it single} higgs doublet below a TeV and a set of three
triplets and an electroweak singlet in the TeV range. All of these scalars
obtain approximately custodial SU(2) preserving vacuum expectation values. This
model addresses a defect in the earlier moose
model, with the only extra complication being an extended top sector. Some of
the precision electroweak observables are computed and do not deviate
appreciably from Standard Model predictions. In an S-T oblique analysis, the
dominant non-Standard Model contributions are the extended top sector and higgs
doublet contributions. In conclusion, a wide range of higgs masses is allowed
in a large region of parameter space consistent with naturalness, where large
higgs masses requires some mild custodial SU(2) violation from the extended top
sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra
discussion on size of T contributions, as well as some other minor
clarifications. Version to appear in JHE
What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs
We study precision electroweak constraints on the close cousin of the
Littlest Higgs, the SU(6)/Sp(6) model. We identify a near-oblique limit in
which the heavy W' and B' decouple from the light fermions, and then calculate
oblique corrections, including one-loop contributions from the extended top
sector and the two Higgs doublets. We find regions of parameter space that give
acceptably small precision electroweak corrections and only mild fine tuning in
the Higgs potential, and also find that the mass of the lightest Higgs boson is
relatively unconstrained by precision electroweak data. The fermions from the
extended top sector can be as light as 1 TeV, and the W' can be as light as 1.8
TeV. We include an independent breaking scale for the B', which can still have
a mass as low as a few hundred GeV.Comment: 52 pages, 16 figure
Precision Electroweak Observables in the Minimal Moose Little Higgs Model
Little Higgs theories, in which the Higgs particle is realized as the
pseudo-Goldstone boson of an approximate global chiral symmetry have generated
much interest as possible alternatives to weak scale supersymmetry. In this
paper we analyze precision electroweak observables in the Minimal Moose model
and find that in order to be consistent with current experimental bounds, the
gauge structure of this theory needs to be modified. We then look for viable
regions of parameter space in the modified theory by calculating the various
contributions to the S and T parameters.Comment: v2: 17 pages, 9 figures. Typeset in JHEP style. Added a references
and two figures showing parameter space for each of two reference points.
Corrected typo
Fermions on an Interval: Quark and Lepton Masses without a Higgs
We consider fermions on an extra dimensional interval. We find the boundary
conditions at the ends of the interval that are consistent with the variational
principle, and explain which ones arise in various physical circumstances. We
apply these results to higgsless models of electroweak symmetry breaking, where
electroweak symmetry is not broken by a scalar vacuum expectation value, but
rather by the boundary conditions of the gauge fields. We show that it is
possible to find a set of boundary conditions for bulk fermions that would give
a realistic fermion mass spectrum without the presence of a Higgs scalar, and
present some sample fermion mass spectra for the standard model quarks and
leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure
Radiative Corrections to One-Photon Decays of Hydrogenic Ions
Radiative corrections to the decay rate of n=2 states of hydrogenic ions are
calculated. The transitions considered are the M1 decay of the 2s state to the
ground state and the E1(M2) decays of the and states to
the ground state. The radiative corrections start in order , but the method used sums all orders of . The leading
correction for the E1 decays is calculated and compared
with the exact result. The extension of the calculational method to parity
nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure
Precision Electroweak Data and Unification of Couplings in Warped Extra Dimensions
Warped extra dimensions allow a novel way of solving the hierarchy problem,
with all fundamental mass parameters of the theory naturally of the order of
the Planck scale. The observable value of the Higgs vacuum expectation value is
red-shifted, due to the localization of the Higgs field in the extra dimension.
It has been recently observed that, when the gauge fields propagate in the
bulk, unification of the gauge couplings may be achieved. Moreover, the
propagation of fermions in the bulk allows for a simple solution to potentially
dangerous proton decay problems. However, bulk gauge fields and fermions pose a
phenomenological challenge, since they tend to induce large corrections to the
precision electroweak observables. In this article, we study in detail the
effect of gauge and fermion fields propagating in the bulk in the presence of
gauge brane kinetic terms compatible with gauge coupling unification, and we
present ways of obtaining a consistent description of experimental data, while
allowing values of the first Kaluza Klein mode masses of the order of a few
TeV.Comment: 32 pages, 7 figures. References adde
- …