13,206 research outputs found
Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks
We develop a method of spectroscopy that uses a weak static magnetic field to
enable direct optical excitation of forbidden electric-dipole transitions that
are otherwise prohibitively weak. The power of this scheme is demonstrated
using the important application of optical atomic clocks based on neutral atoms
confined to an optical lattice. The simple experimental implementation of this
method -- a single clock laser combined with a DC magnetic field-- relaxes
stringent requirements in current lattice-based clocks (e.g., magnetic field
shielding and light polarization), and could therefore expedite the realization
of the extraordinary performance level predicted for these clocks. We estimate
that a clock using alkaline earth-like atoms such as Yb could achieve a
fractional frequency uncertainty of well below 10^-17 for the metrologically
preferred even isotopes
Two-component radiation model of the sonoluminescing bubble
Based on the experimental data from Weninger, Putterman & Barber, Phys. Rev.
(E), 54, R2205 (1996), we offer an alternative interpretation of their
experimetal results. A model of sonoluminescing bubble which proposes that the
electromagnetic radiation originates from two sources: the isotropic black body
or bramsstrahlung emitting core and dipole radiation-emitting shell of
accelerated electrons driven by the liquid-bubble interface is outlined.Comment: 5 pages Revtex, submitted to Phys. Rev.
Optical Lattice Induced Light Shifts in an Yb Atomic Clock
We present an experimental study of the lattice induced light shifts on the
1S_0-3P_0 optical clock transition (v_clock~518 THz) in neutral ytterbium. The
``magic'' frequency, v_magic, for the 174Yb isotope was determined to be 394
799 475(35)MHz, which leads to a first order light shift uncertainty of 0.38 Hz
on the 518 THz clock transition. Also investigated were the hyperpolarizability
shifts due to the nearby 6s6p 3P_0 - 6s8p 3P_0, 6s8p 3P_2, and 6s5f 3F_2
two-photon resonances at 759.708 nm, 754.23 nm, and 764.95 nm respectively. By
tuning the lattice frequency over the two-photon resonances and measuring the
corresponding clock transition shifts, the hyperpolarizability shift was
estimated to be 170(33) mHz for a linear polarized, 50 uK deep, lattice at the
magic wavelength. In addition, we have confirmed that a circularly polarized
lattice eliminates the J=0 - J=0 two-photon resonance. These results indicate
that the differential polarizability and hyperpolarizability frequency shift
uncertainties in a Yb lattice clock could be held to well below 10^-17.Comment: Accepted to PR
Queensland Drug Trends 2019: Key Findings from the Ecstasy and Related Drugs Reporting System (EDRS) Interviews
This report describes annual data and 20-year trends in the use of ecstasy and related drugs, harms associated with use, and drug markets in Queensland.\ua0 It forms part of a nationwide, annual series of reports prepared for the Commonwealth Government and distributed widely to state government health and law enforcement agencies, and is used to inform policy and treatment responses.\ua0In the 2019 sample, cannabis and ecstasy were the drugs of choice nominated\ua0(28% and 23%), while cannabis and alcohol were the drugs used most often\ua0(54% and 21%). A quarter of recent users consumed ecstasy weekly or more often; most perceived it easy or very easy to obtain. One in 4 participants had recently used methamphetamine, 67% cocaine, 53% LSD, 56% nitrous oxide and 27% ketamine
Bubble Shape Oscillations and the Onset of Sonoluminescence
An air bubble trapped in water by an oscillating acoustic field undergoes
either radial or nonspherical pulsations depending on the strength of the
forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor
instability and parametric instability) cause deviations from sphericity.
Distinguishing these mechanisms allows explanation of many features of recent
experiments on sonoluminescence, and suggests methods for finding
sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres
Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice
We report direct single-laser excitation of the strictly forbidden
(6s^2)^1S_0 -(6s6p)^3P_0 clock transition in the even 174Yb isotope confined to
a 1D optical lattice. A small (~1.2 mT) static magnetic field was used to
induce a nonzero electric dipole transition probability between the clock
states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FHWM) with high
contrast were observed, demonstrating a record neutral-atom resonance quality
factor of 2.6x10^13. The previously unknown ac Stark shift-canceling (magic)
wavelength was determined to be 759.35+/-0.02 nm. This method for using the
metrologically superior even isotope can be easily implemented in current Yb
and Sr lattice clocks, and can create new clock possibilities in other alkaline
earth-like atoms such as Mg and Ca.Comment: Submitted to Physics Review Letter
Frequency evaluation of the doubly forbidden transition in bosonic Yb
We report an uncertainty evaluation of an optical lattice clock based on the
transition in the bosonic isotope Yb by use
of magnetically induced spectroscopy. The absolute frequency of the
transition has been determined through comparisons
with optical and microwave standards at NIST. The weighted mean of the
evaluations is (Yb)=518 294 025 309 217.8(0.9) Hz. The uncertainty
due to systematic effects has been reduced to less than 0.8 Hz, which
represents in fractional frequency.Comment: 4 pages, 3 figure -Submitted to PRA Rapid Communication
Modularity and community detection in bipartite networks
The modularity of a network quantifies the extent, relative to a null model
network, to which vertices cluster into community groups. We define a null
model appropriate for bipartite networks, and use it to define a bipartite
modularity. The bipartite modularity is presented in terms of a modularity
matrix B; some key properties of the eigenspectrum of B are identified and used
to describe an algorithm for identifying modules in bipartite networks. The
algorithm is based on the idea that the modules in the two parts of the network
are dependent, with each part mutually being used to induce the vertices for
the other part into the modules. We apply the algorithm to real-world network
data, showing that the algorithm successfully identifies the modular structure
of bipartite networks.Comment: RevTex 4, 11 pages, 3 figures, 1 table; modest extensions to conten
Universal transport in 2D granular superconductors
The transport properties of quench condensed granular superconductors are
presented and analyzed. These systems exhibit transitions from insulating to
superconducting behavior as a function of inter-grain spacing.
Superconductivity is characterized by broad transitions in which the resistance
drops exponentially with reducing temperature. The slope of the log R versus T
curves turns out to be universaly dependent on the normal state film resistance
for all measured granular systems. It does not depend on the material, critical
temperature, geometry, or experimental set-up. We discuss possible physical
scenarios to explain these findings.Comment: 4 pages, 3 figure
Finding critical points using improved scaling Ansaetze
Analyzing in detail the first corrections to the scaling hypothesis, we
develop accelerated methods for the determination of critical points from
finite size data. The output of these procedures are sequences of
pseudo-critical points which rapidly converge towards the true critical points.
In fact more rapidly than previously existing methods like the Phenomenological
Renormalization Group approach. Our methods are valid in any spatial
dimensionality and both for quantum or classical statistical systems. Having at
disposal fast converging sequences, allows to draw conclusions on the basis of
shorter system sizes, and can be extremely important in particularly hard cases
like two-dimensional quantum systems with frustrations or when the sign problem
occurs. We test the effectiveness of our methods both analytically on the basis
of the one-dimensional XY model, and numerically at phase transitions occurring
in non integrable spin models. In particular, we show how a new Homogeneity
Condition Method is able to locate the onset of the
Berezinskii-Kosterlitz-Thouless transition making only use of ground-state
quantities on relatively small systems.Comment: 16 pages, 4 figures. New version including more general Ansaetze
basically applicable to all case
- …