339 research outputs found
Recommended from our members
Nanostructure Multilayer Materials for Capacitor Energy Storage for Eh Vehicles
Acceleration and regenerative breaking for electric and hybrid vehicles require high power capacitors to complement energy sources. Large, flat nanostructure multilayer capacitors (NMCS) can provide load balancing capacitance in EHVs of the future. Additional uses include snubber capacitors for power electronics such as motor drives, energy discharge capacitors for lasers, and numerous industrial and military electronics applications [1]. In the present work, we demonstrate the effectiveness of LLNL`s multilayer materials technology by fabricating NMC test films with high energy and power density
X ray imaging microscope for cancer research
The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research
The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom
The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory
The Multi-Spectral Solar Telescope Array (MSSTA)
In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona
Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion
This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project
Recommended from our members
Measurement of spatial gain profiles in multiple pulse driven Ne like Ge lasers
We present the first direct spatial measurement of the two dimensional gain profiles for a Ne-like ion using a slab target illuminated by the multiple pulse technique. To understand the spatial dependence of the gain in Ne-like Ge on the 19.6 nm laser line for plasmas driven by a series of 100 ps pulses 400 ps apart we did a series of Nova experiments backlighting short Ge amplifiers. Two-dimensional, high-resolution, spatial images of the 19.6 nm laser emission from the output aperture of the amplifiers were measured to determine the spatial position of the gain. The amplifier lengths were chosen to be short enough to avoid significant refraction of the beam. In previous imaging experiments which measured the near field output of the Ge laser, the position of the laser output was dominated by refraction effects. To assure good temporal overlap, we used the traveling wave geometry to illuminate both the amplifier and backlighter. The amplifier design included a wire fiducial which provided an absolute spatial reference and avoided the usual difficulty of determining the location of the target surface. We compare the measured gain with simulations done using LASNEX, which calculates the hydrodynamic evolution of the plasma, and XRASER, which uses the temperature and densities from LASNEX to do the gain and kinetics calculations
Observation and Modeling of the Solar Transition Region: II. Solutions of the Quasi-Static Loop Model
In the present work we undertake a study of the quasi-static loop model and
the observational consequences of the various solutions found. We obtain the
most general solutions consistent with certain initial conditions. Great care
is exercised in choosing these conditions to be physically plausible (motivated
by observations). We show that the assumptions of previous quasi-static loop
models, such as the models of Rosner, Tucker and Vaiana (1978) and Veseckey,
Antiochos and Underwood (1979), are not necessarily valid for small loops at
transition region temperatures. We find three general classes of solutions for
the quasi-static loop model, which we denote, radiation dominated loops,
conduction dominated loops and classical loops. These solutions are then
compared with observations. Departures from the classical scaling law of RTV
are found for the solutions obtained. It is shown that loops of the type that
we model here can make a significant contribution to lower transition region
emission via thermal conduction from the upper transition region.Comment: 30 pages, 3 figures, Submitted to ApJ, Microsoft Word File 6.0/9
Recommended from our members
Reconstruction of Quasi-Monochromatic Images for Multispectral X-ray Imaging with a Pinhole Array and a Flat Bragg Mirror
We have developed a software package for reconstruction of quasi-monochromatic images from a multiple monochromatic x-ray imager for inertial confinement fusion implosions. The instrument consists of a pinhole array, a multi-layer Bragg mirror, and a image detector. The pinhole array projects hundreds of images onto the detector after reflection off the multi-layer Bragg mirror, which introduces spectral dispersion along the reflection axis. The quasi-monochromatic images of line emissions and continuum emissions can be used for measurement of temperature and density maps of implosion plasmas. In this paper, we describe a computer-aided processing technique for systematic reconstruction of quasi-monochromatic images from raw data. This technique provides flexible spectral bandwidth selection, and allows systematic subtraction of continuum emission from line emission images
Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s−1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m−3, we find that the expected value of the momentum enhancement factor, β, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m−3, β=3.61+0.19−0.25(1σ). These β values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos
Recommended from our members
Multilayer Thin Film Thermoelectrics Produced by Sputtering
In this work we explore the possibility of achieving bulk electrical properties in single layer sputter deposited films grown epitaxially on (111) oriented BaF{sub 2} substrates. There are a number of sputter deposition parameters that can be varied in order to optimize the film quality. It is important to understand the effect of varying the deposition temperature, Ar sputtering gas pressure, and the substrate bias. We will consider only Bi and Bi{sub 0.86}Sb{sub 0.14} films in this paper. These materials were chosen since they have the same simple structure, two different band gaps and do not change significantly either in physical or electrical properties with small amounts of cross contamination. We will also present our work on multilayer thermoelectrics made of Bi and Bi{sub 0.86}Sb{sub 0.14} layers. There has been considerable interest in this multilayer structure in the literature. Theoretical calculations of the band structure and interface states of these multilayer structures have been made by Mustafaev and Agassi et al. respectively [6,7]. Experimentally Yoshida et al. have examined similar multilayer structures grown by MBE as well as Bi/Sb multilayer samples in which report an anomalous thermoelectric power [8]
- …