30 research outputs found

    Gene Silencing in Severe Systemic Inflammation

    No full text

    Gene-Specific Epigenetic Regulation in Serious Infections with Systemic Inflammation

    No full text
    Inflammation is a fundamental biologic process that is evolutionally conserved by a germ line code. The interplay between epigenetics and environment directs the code into temporally distinct inflammatory responses, which can be acute or chronic. Here, we discuss the epigenetic processes of innate immune cells during serious infections with systemic inflammation in four stages: homeostasis, incitement, evolution, and resolution. We describe feed-forward loops of serious infections with systemic inflammation that create gene-specific silent facultative heterochromatin and active euchromatin according to gene function, and speculate on the role of epigenetics in survival

    Sirtuin 2 Regulates Microvascular Inflammation during Sepsis

    No full text
    Objective. Sepsis and septic shock, the leading causes of death in noncoronary intensive care units, kill more than 200,000/year in the US alone. Circulating cell-endothelial cell interactions are the rate determining factor in sepsis inflammation. Sirtuin, a seven-member family of proteins (SIRT1–7), epigenetically controls inflammation. We have studied the roles of SIRTs 1, 3, and 6 in sepsis previously. In this project, we studied the role of SIRT2 on sepsis-related inflammation. Methods. Sepsis was induced in C57Bl/6 (WT), SIRT2 knockout (SIRT2KO), and SIRT2 overexpressing (SIRT2KI) mice by cecal ligation and puncture (CLP). We studied leukocyte/platelet adhesion using intravital microscopy and E-selectin/ICAM-1 adhesion molecule expression in the small intestine with immunohistochemistry (IHC) six hours post-CLP/sham surgery. We also studied 7-day survival rates in WT, SIRT2KO, and SIRT2KI sepsis mice. Results. Compared to WT mice, SIRT2KO mice show exaggeration while SIRT2KI mice show attenuation of cellular adhesion with sepsis in the small intestine. We also show that the small intestinal E-selectin and ICAM-1 expressions increased in SIRT2KO and decreased in SIRT2KI mice versus those in WT sepsis mice. We show that the 7-day survival rate is decreased in SIRT2KO and increased in SIRT2KI sepsis mice. Conclusion. SIRT2 modulates microvascular inflammation in sepsis and affects survival

    Sirtuins Link Inflammation and Metabolism

    No full text
    Sirtuins (SIRT), first discovered in yeast as NAD+ dependent epigenetic and metabolic regulators, have comparable activities in human physiology and disease. Mounting evidence supports that the seven-member mammalian sirtuin family (SIRT1–7) guard homeostasis by sensing bioenergy needs and responding by making alterations in the cell nutrients. Sirtuins play a critical role in restoring homeostasis during stress responses. Inflammation is designed to “defend and mend” against the invading organisms. Emerging evidence supports that metabolism and bioenergy reprogramming direct the sequential course of inflammation; failure of homeostasis retrieval results in many chronic and acute inflammatory diseases. Anabolic glycolysis quickly induced (compared to oxidative phosphorylation) for ROS and ATP generation is needed for immune activation to “defend” against invading microorganisms. Lipolysis/fatty acid oxidation, essential for cellular protection/hibernation and cell survival in order to “mend,” leads to immune repression. Acute/chronic inflammations are linked to altered glycolysis and fatty acid oxidation, at least in part, by NAD+ dependent function of sirtuins. Therapeutically targeting sirtuins may provide a new class of inflammation and immune regulators. This review discusses how sirtuins integrate metabolism, bioenergetics, and immunity during inflammation and how sirtuin-directed treatment improves outcome in chronic inflammatory diseases and in the extreme stress response of sepsis
    corecore