3 research outputs found

    Spectrum of Epithelial-Mesenchymal Transition Phenotypes in Circulating Tumour Cells from Early Breast Cancer Patients

    No full text
    Circulating tumour cells (CTCs) can provide valuable prognostic information in a number of epithelial cancers. However, their detection is hampered due to their molecular heterogeneity, which can be induced by the epithelial-mesenchymal transition (EMT) process. Therefore, current knowledge about CTCs from clinical samples is often limited due to an inability to isolate wide spectrum of CTCs phenotypes. In the current work, we aimed at isolation and molecular characterization of CTCs with different EMT status in order to establish their clinical significance in early breast cancer patients. We have obtained CTCs-enriched blood fraction from 83 breast cancer patients in which we have tested the expression of epithelial, mesenchymal and general breast cancer CTCs markers (MGB1/HER2/CK19/CDH1/CDH2/VIM/PLS3), cancer stem cell markers (CD44, NANOG, ALDH1, OCT-4, CD133) and cluster formation gene (plakoglobin). We have shown that in the CTCs-positive patients, epithelial, epithelial-mesenchymal and mesenchymal CTCs markers were detected at a similar rate (in 28%, 24% and 24%, respectively). Mesenchymal CTCs were characterized by the most aggressive phenotype (significantly higher expression of CXCR4, uPAR, CD44, NANOG, p < 0.05 for all), presence of lymph node metastases (p = 0.043), larger tumour size (p = 0.023) and 7.33 higher risk of death in the multivariate analysis (95% CI 1.06–50.41, p = 0.04). Epithelial-mesenchymal subtype, believed to correspond to highly plastic and aggressive state, did not show significant impact on survival. Gene expression profile of samples with epithelial-mesenchymal CTCs group resembled pure epithelial or pure mesenchymal phenotypes, possibly underlining degree of EMT activation in particular patient’s sample. Molecular profiling of CTCs EMT phenotype provides more detailed and clinically informative results, proving the role of EMT in malignant cancer progression in early breast cancer

    Aggressive Phenotype of Cells Disseminated via Hematogenous and Lymphatic Route in Breast Cancer Patients

    No full text
    Intratumoral heterogeneity of breast cancer remains a major challenge in successful treatment. Failure of cancer therapies can also be accredited to inability to systemically eradicate cancer stem cells (CSCs). Recent evidence points to the role of epithelial-mesenchymal transition (EMT) in expanding the pool of tumor cells with CSCs features. Thus, we assessed expression level as well as heterogeneity of CSCs markers in primary tumors (PT), lymph node metastasis (LNM), and circulating tumor cells (CTCs)–enriched blood fractions in order to correlate them with signs of EMT activation as well as clinicopathological data of breast cancer patients. Level of CSCs markers (ALDH1, CD44, CD133, OCT-4, NANOG) and EMT markers was quantified in PT (N=107), LNM (N=56), and CTCs-enriched blood fractions (N=85). Heterogeneity of CSCs markers expression within each PT and LNM was assessed by calculating Gini Index. Percentage of ALDH1-positive cells was elevated in PT in comparison to LNM (P = .005). However, heterogeneity of the four CSCs markers: ALDH1 (P = .019), CD133 (P = .009), OCT-4 (P = .027), and CD44 (P < .001) was decreased in LNM. Samples classified as mesenchymal (post-EMT) showed elevated expression of CSCs markers (OCT-4 and CD44 in PT; OCT-4 in LNM; ALDH1, OCT-4, NANOG, CD44 in CTCs). Patients with mesenchymal-like CTCs had worse prognosis than patients with epithelial-like or no CTCs (P = .0025). CSCs markers are enriched in PT, LNM, and CTCs with mesenchymal features, but their heterogeneity is decreased in metastatic lymph nodes. Mesenchymal CTCs phenotype correlates with poor prognosis of the patients
    corecore