157 research outputs found
Intraocular pressure in a cohort of healthy Eastern European schoolchildren: variations in method and corneal thickness
BACKGROUND:
Intraocular pressure (IOP) in the developing eye of a child is not always easy to measure and there is no technique that is known to be the most accurate for the young eye. Measurements are needed on many cohorts of children with different tonometers to determine how the values correlate between instruments, whether corneal parameters affect readings and whether correlations between age and IOP values can be discerned. The aim of this study was to undertake a comparative analysis of three different tonometers on a group of healthy children to see whether differences exist and whether these may be related to central corneal thickness and/or radius of curvature. In addition, the study adds to the relatively small body of literature on IOP in the growing eye which will collectively allow trends to be identified and ultimately norms to be established.
METHODS:
IOP was measured on 115 eyes in a group of Polish children, aged between 5-17 years (mean±standard deviation [SD] 11.3±3.0 years) using three different tonometers: non-contact (NCT), the ICare and Goldmann applanation (GAT). Readings obtained were compared between instruments and with central corneal thickness and radius of curvature.
RESULTS:
The ICare tonometer provided statistically higher IOP values (16.9±3.4 mmHg) than the GAT (14.7±2.9 mmHg) regardless of corneal thickness and whether or not a correction factor was applied. A correlation was found between central corneal thickness (CCT) and IOP values obtained with all three tonometers but only the IOP values detected with the ICare tonometer showed a statistically significant correlation with radius of curvature (p<0.004). No correlations with age or gender were found for IOP values measured with any of the instruments.
CONCLUSIONS:
IOP measurements on children vary significantly between instruments and correlations are affected by the corneal thickness. Further studies on children are needed to determine which instrument is most appropriate and to derive a normative IOP scale for the growing eye
Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress
The human lens provides one-third of the ocular focussing power and is responsible for altering focus over a range of distances. This ability, termed accommodation, defines the process by which the lens alters shape to increase or decrease ocular refractive power; this is mediated by the ciliary muscle through the zonule. This ability decreases with age such that around the sixth decade of life it is lost rendering the eye unable to focus on near objects. There are two opponent theories that provide an explanation for the mechanism of accommodation; definitive support for either of these requires investigation. This work aims to elucidate how material properties can affect accommodation using Finite Element models based on interferometric measurements of refractive index. Gradients of moduli are created in three models from representative lenses, aged 16, 35 and 48 years. Different forms of zonular attachments are studied to determine which may most closely mimic the physiological form by comparing stress and displacement fields with simulated shape changes to accommodation in living lenses. The results indicate that for models to mimic accommodation in living eyes, the anterior and posterior parts of the zonule need independent force directions. Choice of material properties affects which theory of accommodation is supported
The effect of the General Data Protection Regulation on medical research
Background: The enactment of the General Data Protection Regulation (GDPR) will impact on European data science. Particular concerns relating to consent requirements that would severely restrict medical data research have been raised.
Objective: Our objective is to explain the changes in data protection laws that apply to medical research and to discuss their potential impact.
Methods: Analysis of ethicolegal requirements imposed by the GDPR. Results: The GDPR makes the classification of pseudonymised data as personal data clearer, although it has not been entirely resolved. Biomedical research on personal data where consent has not been obtained must be of substantial public interest.
Conclusions: The GDPR introduces protections for data subjects that aim for consistency across the EU. The proposed changes will make little impact on biomedical data research
Single function crystalline lens capable of mimicking ciliary body accommodation
The lens is a complex optical component of the human eye because of its physiological structure: the surface is aspherical and the structural entities create a gradient refractive index (GRIN). Most existent models of the lens deal with its external shape independently of the refractive index and, subsequently, through optimization processes, adjust the imaging properties. In this paper, we propose a physiologically realistic GRIN model of the lens based on a single function for the whole lens that accurately describes different accommodative states simultaneously providing the corresponding refractive index distribution and the external shape of the lens by changing a single parameter that we associate with the function of the ciliary body. This simple, but highly accurate model, is incorporated into a schematic eye constructed with reported experimental biometric data and accommodation is simulated over a range of 0 to 6 diopters to select the optimum levels of image quality. Changes with accommodation in equatorial and total axial lens thicknesses, as well as aberrations, are found to lie within reported biometric data range
Curcumin In Situ Gelling Polymeric Insert with Enhanced Ocular Performance
The search for an ocular drug delivery system that could provide long-acting effects without a detriment to the anatomy and physiology of the eye remains a challenge. Polyphenolic compounds (curcumin in particular) have recently gained popularity due to their powerful antioxidant properties; yet curcumin suffers poor stability and water solubility. A conventional eye drop formulation of curcumin in the form of a suspension is likely to suffer a short duration of action requiring multiple instillations. On the other hand, polymeric in-situ gelling inserts offer the prospect of overcoming these limitations. The aim of this study was to prepare, characterize and evaluate in vivo, polymeric, in-situ gelling and mucoadhesive inserts for ocular surface delivery of curcumin. Different types and ratios of biocompatible polymers (HPMC, CMC, PL 127 and PVA) and three plasticizers along with the solvent casting method were adopted to prepare curcumin inserts. The inserts were investigated for their physicochemical characteristics, applicability, and suitability of use for potential placement on the ocular surface. The prepared inserts revealed that curcumin was mainly dispersed in the molecular form. Insert surfaces remained smooth and uniform without cracks appearing during preparation and thereafter. Improved mechanical and mucoadhesive properties, enhanced in vitro release (7.5- to 9-fold increases in RRT300 min) and transcorneal permeation (5.4- to 8.86-fold increases in Papp) of curcumin was achieved by selected in-situ gelling inserts compared to a control curcumin suspension. The developed inserts demonstrated acceptable ocular tolerability, enhanced corneal permeability, and sustained release of curcumin along with retention of insert formulation F7 on the ocular surface for at least two-hours. This insert provides a viable alternative to conventional eye drop formulations of curcumin
How a dynamic optical system maintains image quality: Self-adjustment of the human eye
The eyeball is continually subjected to forces that cause alterations to its shape and dimensions, as well as to its optical components. Forces that induce accommodation result in an intentional change in focus; others, such as the effect of intraocular pressure fluctuations, are more subtle. Although the mechanical properties of the eyeball and its components permit mediation of such subtle forces, the concomitant optical changes are not detected by the visual system. Optical self-adjustment is postulated as the mechanism that maintains image quality. The purpose of this study was to investigate how self-adjustment occurs by using an optical model of the eyeball and to test the requisite optical and biometric conditions
Refractive index degeneration in older lenses: A potential functional correlate to structural changes that underlie cataract formation
A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples. The X-ray Talbot interferometric method using synchrotron radiation allows for measurement of fine changes in refractive index through lenses with opacities. The findings of this study on older human lenses show disruptions to the refractive index gradient and in the refractive index contours. These disruptions are linked to location in the lens and occur in polar regions, along or close to the equatorial plane or in lamellar-like formations. The disruptions that are seen in the polar regions manifest branching formations that alter with progression through the lens with some similarity to lens sutures. This study shows how the refractive index gradient, which is needed to maintain image quality of the eye, may be disturbed and that this can occur in a number of distinct ways. These findings offer insight into functional changes to a major optical parameter in older lenses. Further studies are needed to elicit how these may be related to structural degenerations reported in the literature
- …