4 research outputs found

    Calculation of GFR via the Slope-Intercept Method in Nuclear Medicine

    Get PDF
    A determination of the glomerular filtration rate (GFR) with high accuracy is of great relevance especially in cases of insufficient kidney function. In nuclear medicine, the standard method is based on blood sample measurements with Cr-51 ethylenediaminetetraacetic acid (Cr-51-EDTA) or Tc-99m diethylene-triamine-pentaacetate (Tc-99m-DTPA), providing very high accuracy and reliability. In particular, the slope-intercept method turned out to be the most appropriate and is therefore routinely used in many hospitals worldwide. For this purpose, blood samples are drawn at certain time points starting 120 minutes after injection, which are then measured together with a standard probe in a gamma counter; based on the results, the GFR calculation is then usually performed automatically with an appropriate software. In this chapter, the mathematical background as well as a step-by-step description of the slope-intercept method is given. In our study, we found that at least three blood samples should be drawn in order to achieve highest quality and reliability. Furthermore, a sample size of at least three blood samples allows an error calculation which provides an estimation of the reliability of the preceding measurement

    Response evaluation of SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus using 18F-FDG PET/MRI

    No full text
    IntroductionInhibitors of sodium-glucose linked transporter-2 (SGLT2i) are enhancing glucose excretion in the proximal renal tubules, and thus are increasingly used to lower blood glucose levels in patients with type 2 diabetes mellitus (T2DM). The glucose analog 2-deoxy-2-(18F) fluoro-D-glucose (FDG) can be used to quantify renal function in vivo, and due to an affinity for SGLT2 could also provide information about SGLT2 transporter function. Our objectives in this study were, therefore, to assess the impact of SGLT2i on renal function parameters in patients with T2DM and identify predictive parameters of long-term response to SGLT2i using dynamic FDG positron emission tomography (PET)/MRI.MethodsPET FDG renal function measures such as mean transit time (MTT) and general renal performance (GRP) together with glomerular filtration rate (GFR) were determined in 20 patients with T2DM before (T2DMbaseline) and 2 weeks after initiation of therapy with SGLT2i (T2DMSGLT2i). Additionally, dynamic FDG PET data of 24 healthy subjects were used as controls.ResultsMTT in T2DMbaseline was significantly higher than in healthy controls (5.7 min vs 4.3 min, p=0.012) and significantly decreased to 4.4 min in T2DMSGLT2i (p=0.004). GRP of T2DMSGLT2i was higher than of T2DMbaseline (5.2 vs 4.7, p=0.02) and higher but not significantly than of healthy individuals (5.2 vs 5.1, p=0.34). Expectedly, GFR of healthy participants was significantly higher than of T2DMbaseline and T2DMSGLT2i (122 vs 92 and 86 mL/min/1.73 m², respectively; p<0.001). The higher the GRP value in kidneys of T2DMSGLT2i, the lower was the glycated hemoglobin level 3 months after therapy initiation.ConclusionMTT and GRP values of patients with T2DM shifted significantly toward values of healthy control 2 weeks after therapy with SGLT2i begins. GRP in T2DMSGLT2i was associated with better long-term glycemic response 3 months after initiation of therapy.Trial registration numberNCT03557138

    If It Works, Don’t Touch It? A Cell-Based Approach to Studying 2-[18F]FDG Metabolism

    No full text
    The glucose derivative 2-[18F]fluoro-2-deoxy-D-glucose (2-[18F]FDG) is still the most used radiotracer for positron emission tomography, as it visualizes glucose utilization and energy demand. In general, 2-[18F]FDG is said to be trapped intracellularly as 2-[18F]FDG-6-phosphate, which cannot be further metabolized. However, increasingly, this dogma is being questioned because of publications showing metabolism beyond 2-[18F]FDG-6-phosphate and even postulating 2-[18F]FDG imaging to depend on the enzyme hexose-6-phosphate dehydrogenase in the endoplasmic reticulum. Therefore, we aimed to study 2-[18F]FDG metabolism in the human cancer cell lines HT1080, HT29 and Huh7 applying HPLC. We then compared 2-[18F]FDG metabolism with intracellular tracer accumulation, efflux and the cells’ metabolic state and used a graphical Gaussian model to visualize metabolic patterns. The extent of 2-[18F]FDG metabolism varied considerably, dependent on the cell line, and was significantly enhanced by glucose withdrawal. However, the metabolic pattern was quite conserved. The most important radiometabolites beyond 2-[18F]FDG-6-phosphate were 2-[18F]FDMannose-6-phosphate, 2-[18F]FDG-1,6-bisphosphate and 2-[18F]FD-phosphogluconolactone. Enhanced radiometabolite formation under glucose reduction was accompanied by reduced efflux and mirrored the cells’ metabolic switch as assessed via extracellular lactate levels. We conclude that there can be considerable metabolism beyond 2-[18F]FDG-6-phosphate in cancer cell lines and a comprehensive understanding of 2-[18F]FDG metabolism might help to improve cancer research and tumor diagnosis

    Direct Patlak Reconstruction of [<sup>68</sup>Ga]Ga-PSMA PET for the Evaluation of Primary Prostate Cancer Prior Total Prostatectomy: Results of a Pilot Study

    No full text
    To investigate the use of kinetic parameters derived from direct Patlak reconstructions of [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) to predict the histological grade of malignancy of the primary tumor of patients with prostate cancer (PCa). Thirteen patients (mean age 66 ± 10 years) with a primary, therapy-naïve PCa (median PSA 9.3 [range: 6.3–130 µg/L]) prior radical prostatectomy, were recruited in this exploratory prospective study. A dynamic whole-body [68Ga]Ga-PSMA-11 PET/CT scan was performed for all patients. Measured quantification parameters included Patlak slope (Ki: absolute rate of tracer consumption) and Patlak intercept (Vb: degree of tracer perfusion in the tumor). Additionally, the mean and maximum standardized uptake values (SUVmean and SUVmax) of the tumor were determined from a static PET 60 min post tracer injection. In every patient, initial PSA (iPSA) values that were also the PSA level at the time of the examination and final histology results with Gleason score (GS) grading were correlated with the quantitative readouts. Collectively, 20 individual malignant prostate lesions were ascertained and histologically graded for GS with ISUP classification. Six lesions were classified as ISUP 5, two as ISUP 4, eight as ISUP 3, and four as ISUP 2. In both static and dynamic PET/CT imaging, the prostate lesions could be visually distinguished from the background. The average values of the SUVmean, slope, and intercept of the background were 2.4 (±0.4), 0.015 1/min (±0.006), and 52% (±12), respectively. These were significantly lower than the corresponding parameters extracted from the prostate lesions (all p p > 0.05). Spearman correlation coefficient analysis demonstrated a strong correlation between static and dynamic PET/CT parameters (all r ≥ 0.70, p 68Ga]Ga-PSMA-11 perfusion and consumption and the aggressiveness of the primary tumor was observed. This suggests that the association between SUV values and GS may be more distinctive when distinguishing clinically relevant from clinically non-relevant PCa
    corecore