25 research outputs found
The role of leadership in HRH development in challenging public health settings
As part of the special feature on leadership and human resources (HR), Management Sciences for Health profiles three leaders who have made a significance difference in the HR situation in their countries. By taking a comprehensive approach and working in partnership with stakeholders, these leaders demonstrate that strengthening health workforce planning, management, and training can have a positive effect on the performance of the health sector
Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
<p>Abstract</p> <p>Background</p> <p>Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity.</p> <p>Methods</p> <p>Several models exist to study adipogenesis <it>in vitro</it>, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white <it>primary </it>murine adipocytes (prior to and following differentiation) to yield global profiles of miRNAs.</p> <p>Results</p> <p>We found 65 miRNAs regulated during <it>in vitro </it>adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided). Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p < 0.001).</p> <p>Conclusion</p> <p>In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell <it>in vitro </it>adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of EXIQON and Affymetrix adipocyte profiles to facilitate data mining.</p
Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors
Although non-small cell lung cancer (NSCLC) patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.Fil: Dalvi, Maithili P.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wang, Lei. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhong, Rui. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kollipara, Rahul K.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Park, Hyunsil. University of Texas. Southwestern Medical Center; Estados UnidosFil: Bayo Fina, Juan Miguel. University of Texas. Southwestern Medical Center; Estados Unidos. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yenerall, Paul. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhou, Yunyun. University of Texas. Southwestern Medical Center; Estados UnidosFil: Timmons, Brenda C.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Rodriguez Canales, Jaime. University of Texas; Estados UnidosFil: Behrens, Carmen. Md Anderson Cancer Center; Estados UnidosFil: Mino, Barbara. University of Texas; Estados UnidosFil: Villalobos, Pamela. University of Texas; Estados UnidosFil: Parra, Edwin R.. University of Texas; Estados UnidosFil: Suraokar, Milind. University of Texas; Estados UnidosFil: Pataer, Apar. University of Texas; Estados UnidosFil: Swisher, Stephen G.. University of Texas; Estados UnidosFil: Kalhor, Neda. University of Texas; Estados UnidosFil: Bhanu, Natarajan V.. University of Pennsylvania; Estados UnidosFil: Garcia, Benjamin A.. University of Pennsylvania; Estados UnidosFil: Heymach, John V.. University of Texas; Estados UnidosFil: Coombes, Kevin. University of Texas; Estados UnidosFil: Xie, Yang. University of Texas. Southwestern Medical Center; Estados UnidosFil: Girard, Luc. University of Texas. Southwestern Medical Center; Estados UnidosFil: Gazdar, Adi F.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kittler, Ralf. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wistuba, Ignacio I.. University of Texas; Estados UnidosFil: Minna, John D.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Martinez, Elisabeth D.. University of Texas. Southwestern Medical Center; Estados Unido
Two PI 3-Kinases and One PI 3-Phosphatase Together Establish the Cyclic Waves of Phagosomal PtdIns(3)P Critical for the Degradation of Apoptotic Cells
Cyclic oscillations in the level of phosphatidylinositol 3-phosphate in phagosomes, regulated by two phosphoinositide kinases and one phosphatase, are critical for phagosome maturation and degradation of apoptotic cells
An Integrated Strategy to Study Muscle Development and Myofilament Structure in Caenorhabditis elegans
A crucial step in the development of muscle cells in all metazoan animals is the assembly and anchorage of the sarcomere, the essential repeat unit responsible for muscle contraction. In Caenorhabditis elegans, many of the critical proteins involved in this process have been uncovered through mutational screens focusing on uncoordinated movement and embryonic arrest phenotypes. We propose that additional sarcomeric proteins exist for which there is a less severe, or entirely different, mutant phenotype produced in their absence. We have used Serial Analysis of Gene Expression (SAGE) to generate a comprehensive profile of late embryonic muscle gene expression. We generated two replicate long SAGE libraries for sorted embryonic muscle cells, identifying 7,974 protein-coding genes. A refined list of 3,577 genes expressed in muscle cells was compiled from the overlap between our SAGE data and available microarray data. Using the genes in our refined list, we have performed two separate RNA interference (RNAi) screens to identify novel genes that play a role in sarcomere assembly and/or maintenance in either embryonic or adult muscle. To identify muscle defects in embryos, we screened specifically for the Pat embryonic arrest phenotype. To visualize muscle defects in adult animals, we fed dsRNA to worms producing a GFP-tagged myosin protein, thus allowing us to analyze their myofilament organization under gene knockdown conditions using fluorescence microscopy. By eliminating or severely reducing the expression of 3,300 genes using RNAi, we identified 122 genes necessary for proper myofilament organization, 108 of which are genes without a previously characterized role in muscle. Many of the genes affecting sarcomere integrity have human homologs for which little or nothing is known
UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity
Background The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. Methodology/Principal Findings Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed β-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. Conclusions/Significance Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development
Use of indicators of standards of care to improve tuberculosis program management in Ethiopia
Background: Systematic monitoring of health programs and on-site mentoring of health workers are essential for the success of health care. This operations research was designed to measure the effectiveness of a new mentorship and supervisory tool for supervisors.
Methods: In 2011 the Help Ethiopia Address the Low TB Performance (HEAL TB) Project used WHO or national TB indicators as standards of care (SOC) for baseline assessment, progress monitoring, gap identification, assessment of health workers’ capacity-building needs, and data quality assurance. Cut-off points were selected for poor, average, and best performers for each indicator. In this analysis we present results from 10 zones (of 28) in which 1,165 health facilities were supported from 2011 through 2015. Other zones were excluded from the analysis because they entered the project later. The data were collected by trained mentors/supervisors and entered into Microsoft Excel. We used rates and ratios to show the impact of the intervention.
Results: The improvement in the median composite score of 13 selected major indicators (out of 22) over four years was significant (p = 0.000). The proportion of health facilities with 100% data accuracy for all forms of TB was 55.1% at baseline and reached 96.5%. In terms of program performance, the TB cure rate improved from 71% to 91.1%, while the treatment success rate increased from 88% to 95.3%. In the laboratory area, where there was previously no external quality assurance (EQA) for sputum microscopy, 1,165 health facilities now have quarterly EQA, and 96.1% of the facilities achieved a ≥ 95% concordance rate in blinded rechecking.
Conclusion: The SOC approach for supervision was effective for measuring progress, enhancing quality of services, identifying capacity needs, and serving as a mentorship and an operational research tool
Who Ratifies Environmental Treaties and Why? Institutionalism, Structuralism and Participation by 192 Nations in 22 Treaties
International environmental accords have become important mechanisms by which nations make promises to administer natural resources and manage the global environment. Previous studies, relying mainly on single cases or small-n data sets, have shed light on the proximate political causes of participation in these agreements. However, no study has yet systematically explained the deeper social determinants of why nations sign, ignore or resist environmental treaties. We offer a theoretically-sequenced model that exploits complementarities between rational choice institutionalism and world-systems theory. Key variables posited by realists and constructivists are also examined, using a new environmental treaty participation index based on ratifications of 22 major environmental agreements by 192 nations. Cross-sectional OLS regression and path analysis strongly supports the institutionalist claim that credibility-the willingness and ability to honor one's international environmental commit-ments-"matters." But these measures also lend considerable support to the world-systems hypothesis that state credibility is strongly influenced by a legacy of colonial incorporation into the world economy. Narrow export base-our proxy for disadvantaged position in the world-economy-directly and indirectly (through institutions and civil society strength) explains nearly six-tenths of national propensity to sign environmental treaties. A nation's natural capital, its ecological vulnerability, and international environmental NGO memberships had no explanatory power in the path analysis. Our results indicate that new theoretical, methodological and policy approaches are needed to address structural barriers to international cooperation. Copyright (c) 2004 Massachusetts Institute of Technology.