21 research outputs found

    Two-person pie-cutting: The fairest cuts

    Get PDF
    Barbanel, Brams, and Stromquist (2009) asked whether there exists a two-person moving-knife procedure that yields an envy-free, undominated, and equitable allocation of a pie. We present two procedures: One yields an envy-free, almost undominated, and almost equitable allocation, whereas the second yields an allocation with the two “almosts” removed. The latter, however, requires broadening the definition of a “procedure," which raises philosophical, as opposed to mathematical, issues. An analogous approach for cakes fails because of problems in eliciting truthful preferences.mechanism design; fair division; divisible good; cake-cutting; pie-cutting

    Two-person cake-cutting: the optimal number of cuts

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good. When two players divide such a good, there is always a perfect division—one that is efficient (Pareto-optimal), envy-free, and equitable—which can be effected with a finite number of cuts under certain mild conditions; this is not always the case when there are more than two players (Brams, Jones, and Klamler, 2011b). We not only establish the existence of such a division but also provide an algorithm for determining where and how many cuts must be made, relating it to an algorithm, “Adjusted Winner” (Brams and Taylor, 1996, 1999), that yields a perfect division of multiple homogenous goods.Cake-cutting; fair division; envy-freeness; adjusted winner; heterogeneous good

    Cutting a pie is not a piece of cake

    Get PDF
    Is there a division among n players of a cake using n-1 parallel vertical cuts, or of a pie using n radial cuts, that is envy-free (each player thinks he or she receives a largest piece and so does not envy another player) and undominated (there is no other allocation as good for all players and better for at least one)? David Gale first asked this question for pies. We provide complete answers for both cakes and pies. The answers depend on the number of players (two versus three or more players) and whether the players' preferences satisfy certain continuity assumptions. We also give some simple algorithms for cutting a pie when there are two or more players, but these algorithms do not guarantee all the properties one might desire in a division, which makes pie-cutting harder than cake-cutting. We suggest possible applications and conclude with two open questions.Fair division; cake-cutting; pie-cutting; divisible good; envy-freeness; allocative efficiency

    Two-Person Cake-Cutting: The Optimal Number of Cuts

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good. When two players divide such a good, there is always a perfect division—one that is efficient (Pareto-optimal), envy-free, and equitable—which can be effected with a finite number of cuts under certain mild conditions; this is not always the case when there are more than two players (Brams, Jones, and Klamler, 2011b). We not only establish the existence of such a division but also provide an algorithm for determining where and how many cuts must be made, relating it to an algorithm, “Adjusted Winner” (Brams and Taylor, 1996, 1999), that yields a perfect division of multiple homogenous goods

    The geometry of efficient fair division

    No full text
    Investigates efficiency properties such as Pareto maximality and fairness properties such as envy-freeness in a geometric context
    corecore