97 research outputs found

    Inhibition of HCV 3a core gene through Silymarin and its fractions

    Get PDF
    Hepatitis C is a major health problem affecting 270 million individuals in world including Pakistan. Current treatment regimen, interferon alpha and ribavirin only cure half of patients due to side effects and high cost. In the present study Silybum marianum (Milk thistle) seeds were collected, extracted and analyzed against HCV 3a core gene by transiently transfecting the liver cells with HCV core plasmid. Our results demonstrated that Silymarin (SM) dose dependently inhibit the expression or function of HCV core gene at a non toxic concentration while the GAPDH remained constant. To identify the active ingredient, SM was fractioned by thin layer chromatography (TLC), column chromatography and HPLC. Purified fractions were tested for HCV core gene and western blotting results showed that two factions of SM (S1 and S2) inhibit HCV 3a core expression or function in liver cells Our results suggest SM and its fractions (S1 and S2) inhibit HCV core gene of 3a genotype and combination of SM and its fractions with interferon will be a better option to treat HCV infection

    Isolation and characterization of two plant growth-promoting bacteria from the rhizoplane of a legume (Lupinus albescens) in sandy soil

    Get PDF
    Duas linhagens bacterianas que apresentaram amplificação de parte do gene nifH, RP1p e RP2p, pertencentes aos gêneros Enterobacter e Serratia, foram isoladas do rizoplano de Lupinus albescens. Essas bactérias são Gram-negativas, com formato de bastonete, móveis, anaeróbias facultativas e apresentam multiplicação rápida, com colônias alcançando diâmetros de 3–4 mm em 24 h de incubação a 28 ºC. RP1p e RP2p também foram capazes de multiplicação em temperaturas elevadas, como 40 ºC, na presença de alta concentração de NaCl (2–3 % v/v) e em valores de pH que variaram de 4 a 10. A linhagem RP1p foi capaz de utilizar 10 das 14 fontes de carbono avaliadas, enquanto a linhagem RP2p utilizou nove. Os isolados produziram sideróforos e compostos indólicos, mas foram incapazes de solubilizar fosfatos. A inoculação de L. albescens com as linhagens RP1p e RP2p resultou em aumento significativo do peso das plantas secas, o que demonstra que essas bactérias apresentam propriedades que favorecem o crescimento vegetal.Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3–4 mm within 24 h of incubation at 28 °C. The bacteria were also able to grow at temperatures as high as 40 °C, in the presence of high (2–3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria

    Sebacinales Everywhere: Previously Overlooked Ubiquitous Fungal Endophytes

    Get PDF
    Inconspicuous basidiomycetes from the order Sebacinales are known to be involved in a puzzling variety of mutualistic plant-fungal symbioses (mycorrhizae), which presumably involve transport of mineral nutrients. Recently a few members of this fungal order not fitting this definition and commonly referred to as ‘endophytes’ have raised considerable interest by their ability to enhance plant growth and to increase resistance of their host plants against abiotic stress factors and fungal pathogens. Using DNA-based detection and electron microscopy, we show that Sebacinales are not only extremely versatile in their mycorrhizal associations, but are also almost universally present as symptomless endophytes. They occurred in field specimens of bryophytes, pteridophytes and all families of herbaceous angiosperms we investigated, including liverworts, wheat, maize, and the non-mycorrhizal model plant Arabidopsis thaliana. They were present in all habitats we studied on four continents. We even detected these fungi in herbarium specimens originating from pioneering field trips to North Africa in the 1830s/40s. No geographical or host patterns were detected. Our data suggest that the multitude of mycorrhizal interactions in Sebacinales may have arisen from an ancestral endophytic habit by specialization. Considering their proven beneficial influence on plant growth and their ubiquity, endophytic Sebacinales may be a previously unrecognized universal hidden force in plant ecosystems

    Modes of Action of Microbially-Produced Phytotoxins

    Get PDF
    Some of the most potent phytotoxins are synthesized by microbes. A few of these share molecular target sites with some synthetic herbicides, but many microbial toxins have unique target sites with potential for exploitation by the herbicide industry. Compounds from both non-pathogenic and pathogenic microbes are discussed. Microbial phytotoxins with modes of action the same as those of commercial herbicides and those with novel modes of action of action are covered. Examples of the compounds discussed are tentoxin, AAL-toxin, auscaulitoxin aglycone, hydantocidin, thaxtomin, and tabtoxin
    corecore