1,237 research outputs found

    Rotating Accelerator-Mode Islands

    Full text link
    The existence of rotating accelerator-mode islands (RAIs), performing quasiregular motion in rotational resonances of order m>1m>1 of the standard map, is firmly established by an accurate numerical analysis of all the known data. It is found that many accelerator-mode islands for relatively small nonintegrability parameter KK are RAIs visiting resonances of different orders m≤3m\leq 3. For sufficiently large KK, one finds also ``pure'' RAIs visiting only resonances of the {\em same} order, m=2m=2 or m=3m=3. RAIs, even quite small ones, are shown to exhibit sufficient stickiness to produce an anomalous chaotic transport. The RAIs are basically different in nature from accelerator-mode islands in resonances of the ``forced'' standard map which was extensively studied recently in the context of quantum accelerator modes.Comment: REVTEX, 31 pages (including 2 tables and 15 figures

    Quasiparticle Interface States in Junctions Involving d-Wave Superconductors

    Full text link
    Influence of surface pair breaking, barrier transmission and phase difference on quasiparticle bound states in junctions with d-wave superconductors is examined. Based on the quasiclassical theory of superconductivity, an approach is developed to handle interface bound states. It is shown in SIS' junctions that low energy bound states get their energies reduced by surface pair breaking, which can be taken into account by introducing an effective order parameter for each superconductor at the junction barrier. More interestingly, for the interface bound states near the continuous spectrum the effect of surface pair breaking may result in a splitting of the bound states. In the tunneling limit this can lead to a square root dependence of a nonequilibrium Josephson current on the barrier transmision, which means an enhancement as compared to the conventional critical current linear in the transmission. Reduced broadening of bound states in NIS junctions due to surface pair breaking is found.Comment: 27 pages, Latex fil

    Combined Paramagnetic and Diamagnetic Response of YBCO

    Full text link
    It has been predicted that the zero frequency density of states of YBCO in the superconducting phase can display interesting anisotropy effects when a magnetic field is applied parallel to the copper-oxide planes, due to the diamagnetic response of the quasi-particles. In this paper we incorporate paramagnetism into the theory and show that it lessens the anisotropy and can even eliminate it altogether. At the same time paramagnetism also changes the scaling with the square root of the magnetic field first deduced by Volovik leading to an experimentally testable prediction. We also map out the analytic structure of the zero frequency density of states as a function of the diamagnetic and paramagnetic energies. At certain critical magnetic field values we predict kinks as we vary the magnetic field. However these probably lie beyond currently accessible field strengths

    Subharmonic Gap Structure in Superconductor/Ferromagnet/Superconductor Junctions

    Full text link
    The behavior of dc subgap current in magnetic quantum point contact is discussed for the case of low-transparency junction with different tunnel probabilities for spin-up (D↑D_\uparrow) and spin-down (D↓D_\downarrow) electrons. Due to the presence of Andreev bound states ±ϵ0\pm \epsilon_0 in the system the positions of subgap electric current steps eVn=(Δ±ϵ0)/neV_n = (\Delta \pm \epsilon_0)/n are split at temperature T≠0T \neq 0 with respect to the nonmagnetic result eVn=2Δ/neV_n=2\Delta/n. It is found that under the condition D↑≠D↓D_\uparrow \neq D_\downarrow the spin current also manifests subgap structure, but only for odd values of nn. The split steps corresponding to n=1,2n=1,2 in subgap electric and spin currents are analytically calculated and the following steps are described qualitatively.Comment: 4 pages, 1 figure, minor stylistic changes, journal-ref adde

    Repulsive Casimir Force: Sufficient Conditions

    Full text link
    In this paper the Casimir energy of two parallel plates made by materials of different penetration depth and no medium in between is derived. We study the Casimir force density and derive analytical constraints on the two penetration depths which are sufficient conditions to ensure repulsion. Compared to other methods our approach needs no specific model for dielectric or magnetic material properties and constitutes a complementary analysis.Comment: 11 pages. 3 figures. Misprints corrected in Eq. (4

    Dispersion Interactions between Optically Anisotropic Cylinders at all Separations: Retardation Effects for Insulating and Semiconducting Single Wall Carbon Nanotubes

    Full text link
    We derive the complete form of the van der Waals dispersion interaction between two infinitely long anisotropic semiconducting/insulating thin cylinders at all separations. The derivation is based on the general theory of dispersion interactions between anisotropic media as formulated in [J. N. Munday, D. Iannuzzi, Yu. S. Barash and F. Capasso, {\sl Phys. Rev. A} {\bf 71}, 042102 (2005)]. This formulation is then used to calculate the dispersion interactions between a pair of single walled carbon nanotubes at all separations and all angles. Non-retarded and retarded forms of the interactions are developed separately. The possibility of repulsive dispersion interactions and non-monotonic dispersion interactions is discussed within the framework of the new formulation

    Quantum point contact conductance in NINS junctions

    Full text link
    The effect of an insulating barrier located at a distance aa from a NS quantum point contact is analyzed in this work. The Bogoliubov de Gennes equations are solved for NINS junctions (S: anysotropic superconductor, I: insulator and N: normal metal), where the NIN region is a quantum wire. For a≠0% a\neq0, bound states and resonances in the differential conductance are predicted. These resonances depend on the symmetry of the pair potential, the strength of the insulating barrier and aa . Our results show that in a NINS quantum point contact the number of resonances vary with the symmetry of the order parameter. This is to be contrasted with the results for the NINS junction, in which only the position of the resonances changes with the symmetry.Comment: 5 pages, 5 Figures, RevTex

    Two regimes for effects of surface disorder on the zero-bias conductance peak of tunnel junctions involving d-wave superconductors

    Full text link
    Impurity-induced quasiparticle bound states on a pair-breaking surface of a d-wave superconductor are theoretically described, taking into account hybridization of impurity- and surface-induced Andreev states. Further a theory for effects of surface disorder (of thin impurity surface layer) on the low-bias conductance of tunnel junctions is developed. We find a threshold ncn_c for surface impurity concentration nSn_S, which separates the two regimes for surface impurity effects on the zero-bias conductance peak (ZBCP). Below the threshold, surface impurities do not broaden the ZBCP, but effectively reduce its weight and generate impurity bands. For low nSn_S impurity bands can be, in principle, resolved experimentally, being centered at energies of bound states induced by an isolated impurity on the surface. For larger nSn_S impurity bands are distorted, move to lower energies and, beginning with the threshold concentration nS=ncn_S=n_c, become centered at zero energy. With increasing nSn_S above the threshold, the ZBCP is quickly destroyed in the case of strong scatterers, while it is gradually suppressed and broaden in the presence of weak impurity potentials. More realistic cases, taking into account additional broadening, not related to the surface disorder, are also considered.Comment: 9 pages, 7 figure

    Casimir torque

    Full text link
    We develop a formalism for the calculation of the flow of angular momentum carried by the fluctuating electromagnetic field within a cavity bounded by two flat anisotropic materials. By generalizing a procedure employed recently for the calculation of the Casimir force between arbitrary materials, we obtain an expression for the torque between anisotropic plates in terms of their reflection amplitude matrices. We evaluate the torque in 1D for ideal and realistic model materials.Comment: 8 pages, 4 figs, Submitted to Proc. of QFEXT'05, to appear in J. Phys.

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let
    • …
    corecore