1,227 research outputs found
Universality versus material dependence of fluctuation forces between metallic wires
We calculate the Casimir interaction between two parallel wires and between a
wire and a metall plate. The dielectric properties of the objects are described
by the plasma, Drude and perfect metal models. We find that at asymptotically
large separation interactions involving plasma wires and/or plates are
independent of the material properties, but depend on the dc conductivity
for Drude wires. Counterintuitively, at intermediate separations the
interaction involving Drude wires can become independent of . At
smaller separations, we compute the interaction numerically and observe an
approach to the proximity approximation
A possible cooling effect in high temperature superconductors
We show that an adiabatic increase of the supercurrent along a superconductor
with lines of nodes of the order parameter on the Fermi surface can result in a
cooling effect. The maximum cooling occurs if the supercurrent increases up to
its critical value. The effect can also be observed in a mixed state of a bulk
sample. An estimate of the energy dissipation shows that substantial cooling
can be performed during a reasonable time even in the microkelvin regime.Comment: 5 pages, to appear in Phys. Rev.
Combined Paramagnetic and Diamagnetic Response of YBCO
It has been predicted that the zero frequency density of states of YBCO in
the superconducting phase can display interesting anisotropy effects when a
magnetic field is applied parallel to the copper-oxide planes, due to the
diamagnetic response of the quasi-particles. In this paper we incorporate
paramagnetism into the theory and show that it lessens the anisotropy and can
even eliminate it altogether. At the same time paramagnetism also changes the
scaling with the square root of the magnetic field first deduced by Volovik
leading to an experimentally testable prediction. We also map out the analytic
structure of the zero frequency density of states as a function of the
diamagnetic and paramagnetic energies. At certain critical magnetic field
values we predict kinks as we vary the magnetic field. However these probably
lie beyond currently accessible field strengths
Collective charge fluctuations and Casimir interactions for quasi one-dimensional metals
We investigate the Casimir interaction between two parallel metallic
cylinders and between a metallic cylinder and plate. The material properties of
the metallic objects are implemented by the plasma, Drude and perfect metal
model dielectric functions. We calculate the Casimir interaction numerically at
all separation distances and analytically at large separations. The
large-distance asymptotic interaction between one plasma cylinder parallel to
another plasma cylinder or plate does not depend on the material properties,
but for a Drude cylinder it depends on the dc conductivity . At
intermediate separations, for plasma cylinders the asymptotic interaction
depends on the plasma wave length while for Drude cylinders
the Casimir interaction can become independent of the material properties. We
confirm the analytical results by the numerics and show that at short
separations, the numerical results approach the proximity force approximation
Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results
The dispersive interaction between nanotubes is investigated through ab
initio theory calculations and in an analytical approximation. A van der Waals
density functional (vdW-DF) [Phys. Rev. Lett. 92, 246401 (2004)] is used to
determine and compare the binding of a pair of nanotubes as well as in a
nanotube crystal. To analyze the interaction and determine the importance of
morphology, we furthermore compare results of our ab initio calculations with a
simple analytical result that we obtain for a pair of well-separated nanotubes.
In contrast to traditional density functional theory calculations, the vdW-DF
study predicts an intertube vdW bonding with a strength that is consistent with
recent observations for the interlayer binding in graphitics. It also produce a
nanotube wall-to-wall separation which is in very good agreement with
experiments. Moreover, we find that the vdW-DF result for the nanotube-crystal
binding energy can be approximated by a sum of nanotube-pair interactions when
these are calculated in vdW-DF. This observation suggests a framework for an
efficient implementation of quantum-physical modeling of the CNT bundling in
more general nanotube bundles, including nanotube yarn and rope structures.Comment: 10 pages, 4 figure
Orientation-dependent Casimir force arising from highly anisotropic crystals: application to Bi2Sr2CaCu2O8+delta
We calculate the Casimir interaction between parallel planar crystals of Au
and the anisotropic cuprate superconductor Bi2Sr2CaCu2O8+delta (BSCCO), with
BSCCO's optical axis either parallel or perpendicular to the crystal surface,
using suitable generalizations of the Lifshitz theory. We find that the strong
anisotropy of the BSCCO permittivity gives rise to a difference in the Casimir
force between the two orientations of the optical axis, which depends on
distance and is of order 10-20% at the experimentally accessible separations 10
to 5000 nm.Comment: 5 pages, 3 figures. Accepted for publication in Physical Review
On the torque on birefringent plates induced by quantum fluctuations
We present detailed numerical calculations of the mechanical torque induced
by quantum fluctuations on two parallel birefringent plates with in plane
optical anisotropy, separated by either vacuum or a liquid (ethanol). The
torque is found to vary as , where represents the angle
between the two optical axes, and its magnitude rapidly increases with
decreasing plate separation . For a 40 m diameter disk, made out of
either quartz or calcite, kept parallel to a Barium Titanate plate at nm, the maximum torque (at ) is of the order of
Nm. We propose an experiment to observe this torque
when the Barium Titanate plate is immersed in ethanol and the other
birefringent disk is placed on top of it. In this case the retarded van der
Waals (or Casimir-Lifshitz) force between the two birefringent slabs is
repulsive. The disk would float parallel to the plate at a distance where its
net weight is counterbalanced by the retarded van der Waals repulsion, free to
rotate in response to very small driving torques.Comment: 7 figures, submitted to Phys. Rev.
Application of the Lifshitz theory to poor conductors
The Lifshitz formula for the dispersive forces is generalized to the
materials, which cannot be described with the local dielectric response.
Principal nonlocality of poor conductors is related with the finite screening
length of the penetrating field and the collisional relaxation; at low
temperatures the role of collisions plays the Landau damping. The spatial
dispersion makes the theory self consistent. Our predictions are compared with
the recent experiment. It is demonstrated that at low temperatures the
Casimir-Lifshitz entropy disappears as in the case of degenerate plasma and
as for the nondegenerate one.Comment: Accepted for publication in PR
A Genetic Search in Frequency Space for Stabilizing Atoms by High-Intensity Laser Fields
The goal of this paper is to explore the power of stochastic search methods, in particular genetic algorithms, to solve a challenging problem in experimental physics. The problem is to find an optimum frequency to stabilize atoms by high-intensity laser fields. The standard approach to search for optimal laser parameters has been by trial and error. This is the first known application of a genetic algorithm technique to model atomic stabilization. Genetic algorithms worked well for this problem as a way to automate the search in a time efficient manner. A parallel platform is used to perform the genetic search efficiently. Locating the best frequency to achieve a suppression of ionization, which is predicted to occur at high intensities, can help design a laboratory experiment and tune to that frequency in order to identify a stabilization effect. The genetic algorithms did successfully identify this optimum frequency. It is indeed possible to extend the number of unknown tunable laser parameters, beyond searching merely over frequency space. For instance, optimal pulse shape and pulse duration can also be included. While conducting such a search in multi-dimensional parameter space, parallel genetic algorithms can offer an advantage to the tedious trial and error procedures
A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle
In this paper we describe an approach to Casimir Force problems that is
ultimately generalizable to all fields, boundary conditions, and cavity
geometries. This approach utilizes locally defined reflection amplitudes to
express the energy per unit area of any Casimir interaction. To demonstrate
this approach we solve a number of Casimir Force problems including the case of
uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a
typ
- …