32 research outputs found

    Adaptive sampling for linear state estimation

    Get PDF
    When a sensor has continuous measurements but sends occasional messages over a data network to a supervisor which estimates the state, the available packet rate fixes the achievable quality of state estimation. When such rate limits turn stringent, the sensor’s messaging policy should be designed anew. What are the good causal messaging policies ? What should message packets contain ? What is the lowest possible distortion in a causal estimate at the supervisor ? Is Delta sampling better than periodic sampling ? We answer these questions for a Markov state process under an idealized model of the network and the assumption of perfect state measurements at the sensor. If the state is a scalar, or a vector of low dimension, then we can ignore sample quantization. If in addition, we can ignore jitter in the transmission delays over the network, then our search for efficient messaging policies simplifies. Firstly, each message packet should contain the value of the state at that time. Thus a bound on the number of data packets becomes a bound on the number of state samples. Secondly, the remaining choice in messaging is entirely about the times when samples are taken. For a scalar, linear diffusion process, we study the problem of choosing the causal sampling times that will give the lowest aggregate squared error distortion. We stick to finite-horizons and impose a hard upper bound N on the number of allowed samples. We cast the design as a problem of choosing an optimal sequence of stopping times. We reduce this to a nested sequence of problems, each asking for a single optimal stopping time. Under an unproven but natural assumption about the least-square estimate at the supervisor, each of these single stopping problems are of standard form. The optimal stopping times are random times when the estimation error exceeds designed envelopes. For the case where the state is a Brownian motion, we give analytically: the shape of the optimal sampling envelopes, the shape of the envelopes under optimal Delta sampling, and their performances. Surprisingly, we find that Delta sampling performs badly. Hence, when the rate constraint is a hard limit on the number of samples over a finite horizon, we should should not use Delta sampling

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Dimorfismo sexual em Siluriformes e Gymnotiformes (Ostariophysi) da AmazĂ´nia

    Full text link

    Invariant Subspace Methods in Linear Multivariable-Distributed Systems and Lumped-Distributed Network Synthesis

    No full text
    Linear multivariable-distributed systems and synthesis problems for lumped-distributed networks are analyzed. The methgods used center around the invariant subspace theory of Helson-Lax and the theory of vectorial Hardy functions. State-space and transfer function models are studied and their relations analyzed. We single out a class of systems and networks with nonrational transfer functions (scattering matrices), for which several of the well-kbown results for lumped systems and networks are generalized. In particular we develop the relations between singularities of transfer functions and "natural modes" of the systems, a degree theory for infinite-dimensional linear systems and a synthesis via lossless embedding of the scattering matrix. Finally coprime factorizations for this class of systems are developed

    Designing response surface model-based run-by-run controllers: a worst case approach

    No full text

    Adaptive identification and control of hysteresis in smart materials

    No full text

    An information-theoretic approach for design and analysis of rooted-tree-based multicast key management schemes

    No full text
    corecore