2 research outputs found

    Artificial intelligence in clinical and translational science: Successes, challenges and opportunities

    Get PDF
    Artificial intelligence (AI) is transforming many domains, including finance, agriculture, defense, and biomedicine. In this paper, we focus on the role of AI in clinical and translational research (CTR), including preclinical research (T1), clinical research (T2), clinical implementation (T3), and public (or population) health (T4). Given the rapid evolution of AI in CTR, we present three complementary perspectives: (1) scoping literature review, (2) survey, and (3) analysis of federally funded projects. For each CTR phase, we addressed challenges, successes, failures, and opportunities for AI. We surveyed Clinical and Translational Science Award (CTSA) hubs regarding AI projects at their institutions. Nineteen of 63 CTSA hubs (30%) responded to the survey. The most common funding source (48.5%) was the federal government. The most common translational phase was T2 (clinical research, 40.2%). Clinicians were the intended users in 44.6% of projects and researchers in 32.3% of projects. The most common computational approaches were supervised machine learning (38.6%) and deep learning (34.2%). The number of projects steadily increased from 2012 to 2020. Finally, we analyzed 2604 AI projects at CTSA hubs using the National Institutes of Health Research Portfolio Online Reporting Tools (RePORTER) database for 2011-2019. We mapped available abstracts to medical subject headings and found that nervous system (16.3%) and mental disorders (16.2) were the most common topics addressed. From a computational perspective, big data (32.3%) and deep learning (30.0%) were most common. This work represents a snapshot in time of the role of AI in the CTSA program

    Open-source Software Sustainability Models: Initial White Paper From the Informatics Technology for Cancer Research Sustainability and Industry Partnership Working Group

    No full text
    BackgroundThe National Cancer Institute Informatics Technology for Cancer Research (ITCR) program provides a series of funding mechanisms to create an ecosystem of open-source software (OSS) that serves the needs of cancer research. As the ITCR ecosystem substantially grows, it faces the challenge of the long-term sustainability of the software being developed by ITCR grantees. To address this challenge, the ITCR sustainability and industry partnership working group (SIP-WG) was convened in 2019. ObjectiveThe charter of the SIP-WG is to investigate options to enhance the long-term sustainability of the OSS being developed by ITCR, in part by developing a collection of business model archetypes that can serve as sustainability plans for ITCR OSS development initiatives. The working group assembled models from the ITCR program, from other studies, and from the engagement of its extensive network of relationships with other organizations (eg, Chan Zuckerberg Initiative, Open Source Initiative, and Software Sustainability Institute) in support of this objective. MethodsThis paper reviews the existing sustainability models and describes 10 OSS use cases disseminated by the SIP-WG and others, including 3D Slicer, Bioconductor, Cytoscape, Globus, i2b2 (Informatics for Integrating Biology and the Bedside) and tranSMART, Insight Toolkit, Linux, Observational Health Data Sciences and Informatics tools, R, and REDCap (Research Electronic Data Capture), in 10 sustainability aspects: governance, documentation, code quality, support, ecosystem collaboration, security, legal, finance, marketing, and dependency hygiene. ResultsInformation available to the public reveals that all 10 OSS have effective governance, comprehensive documentation, high code quality, reliable dependency hygiene, strong user and developer support, and active marketing. These OSS include a variety of licensing models (eg, general public license version 2, general public license version 3, Berkeley Software Distribution, and Apache 3) and financial models (eg, federal research funding, industry and membership support, and commercial support). However, detailed information on ecosystem collaboration and security is not publicly provided by most OSS. ConclusionsWe recommend 6 essential attributes for research software: alignment with unmet scientific needs, a dedicated development team, a vibrant user community, a feasible licensing model, a sustainable financial model, and effective product management. We also stress important actions to be considered in future ITCR activities that involve the discussion of the sustainability and licensing models for ITCR OSS, the establishment of a central library, the allocation of consulting resources to code quality control, ecosystem collaboration, security, and dependency hygiene
    corecore