233 research outputs found

    Genetic and phenotype analysis of Borrelia valaisiana sp.nov. (Borrelia genomic groups VS116 and M19)

    Get PDF
    To clarify the taxonomic status of two recently described Borrelia genomic groups, groups VS116 and M19, three group VS116 strains and eight group M19 strains isolated from Ixodes ricinus ticks in Switzerland, The Netherlands, and the United Kingdom were characterized. PCR-restriction fragment length polymorphism (RFLP) analysis of the 5S-23S intergenic spacer amplicon, rRNA gene restriction analysis, 16S rRNA gene sequence analysis, randomly amplified polymorphic DNA (RAPD) fingerprinting, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting with monoclonal antibodies were used for genetic and phenotypic analysis. The PCR-RFLP and RAPD patterns of three group VS116 strains and eight group M19 strains were identical but differed from those of Borrelia burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, and Borrelia japonica. DNAs from all group VS116 and M19 strains yielded three fragments (6.9, 3.2, and 1.4 kb) and four fragments (2.1, 1.2, 0.8, and 0.6 kb) after digestion with EcoRV and HindIII, respectively, hybridizing with an Escherichia coli 16S + 23S cDNA probe. The SDS-PAGE protein profiles of group VS116 and M19 strains were heterogeneous. Phylogenetic analysis of the partial 16S rRNA gene sequences showed that group VS116 and M19 spirochetes were members of a Borrelia species distinct from previously characterized members of the genus Borrelia. Based on our present study and data from previous DNA-DNA hybridizations, a new Borrelia species, Borrelia valaisiana sp.nov., in the B. burgdorferi complex, is proposed. Strain VS116 is the type strain of this new specie

    OspA heterogeneity of Borrelia valaisiana confirmed by phenotypic and genotypic analyses

    Get PDF
    BACKGROUND: Although European Borrelia burgdorferi sensu lato isolates have been divided into five genospecies, specific tools for the serotype characterization of only three genospecies are available. Monoclonals antibodies (mAbs) H3TS, D6 and I17.3 identify B. burgdorferi sensu stricto (ss.), B. garinii and B. afzelii respectively, but no mAbs are available to identify B. valaisiana. In the same way, specific primers exist to amplify the OspA gene of B. burgdorferi ss., B. garinii and B. afzelii. The aim of the study was to develop species-specific mAb and PCR primers for the phenotypic and genetic identification of B. valaisiana. RESULTS: This study describes a mAb that targets OspA of B. valaisiana and primers targeting the OspA gene of this species. As the monoclonal antibody A116k did not react with strains NE231, M7, M53 and Frank and no amplification was observed with strains NE231, M7 and M53, the existence of two subgroups among European B. valaisiana species was confirmed. CONCLUSIONS: The association of both monoclonal antibody A116k and primers Bval 1F and Bval 1R allows to specific identification of the B. valaisiana isolates belonging to subgroup 1

    Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis

    Get PDF
    Funding Information: This work was supported by the European Regional Development Fund (ERDF) grant Nr. 1.1.1.2/VIAA/1/16/144 “Structural and functional studies of Lyme disease agent Borrelia burgdorferi outer surface proteins to reveal the mechanisms of pathogenesis with the intention to create a new vaccine”. Diffraction data have been collected on BL14.1 at the BESSY II electron storage ring operated by the Helmholtz-Zentrum, Berlin. We would particularly like to acknowledge the help and support of Manfred S. Weiss and Christian Feiler during the experiment. Publisher Copyright: © 2018, The Author(s).Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.publishersversionPeer reviewe

    Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    Get PDF
    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500,mu A cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning

    Borrelioses, agentes e vetores

    Full text link
    corecore