27 research outputs found

    Identifying Relapsing Fever Borrelia, Senegal

    Get PDF
    We describe a nested polymerase chain reaction for the identification of Borrelia species from serum of patients with unidentified fevers. This technique, based on single nucleotide polymorphisms of the 16S ribosomal RNA gene, was used to test blood samples from 7,750 patients, 33 of whom were diagnosed with spirochete infections. Borrelia crocidurae was the only species identified

    Borrelia carolinensis sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex isolated from rodents and a tick from the south-eastern USA

    Get PDF
    A group of 16 isolates with genotypic characteristics different from those of known species of the Borrelia burgdorferi sensu lato complex were cultured from ear biopsies of the rodents Peromyscus gossypinus and Neotoma floridana trapped at five localities in South Carolina, USA, and from the tick Ixodes minor feeding on N. floridana. Multilocus sequence analysis of members of the novel species, involving the 16S rRNA gene, the 5S–23S (rrf–rrl) intergenic spacer region and the flagellin, ospA and p66 genes, was conducted and published previously and was used to clarify the taxonomic status of the novel group of B. burgdorferi sensu lato isolates. Phylogenetic analysis based on concatenated sequences of the five analysed genomic loci showed that the 16 isolates clustered together but separately from other species in the B. burgdorferi sensu lato complex. The analysed group therefore represents a novel species, formally described here as Borrelia carolinensis sp. nov., with the type strain SCW-22T (=ATCC BAA-1773T =DSM 22119T)

    Etude du polymorphisme du gène ospC de B. burgdorferi et de son implication dans l'invasité chez l'homme

    No full text
    La maladie de Lyme est due à la bactérie de Borrelia burdoferi transmise par piqûre de tiques. La maladie peut évoluer en atteintes secondaires se traduisant par l'infection de sites distants du point d'inoculation(LCR, articulation, coeur) Nos travaux ont concerné la diversité génétique du gène ospC. Différents groupes ospC ont pu être définis en regroupant des séquences ospC similaires. L'analyse par SSCP des séquences ospC de souches invasives (isolées de sites distants) nous a permis de montrer que ces souches appartenaient à un nombre restreint de groupes ospC (35%). le caractére invasif de ces souches a été validé chez le modèle murin puisque seules les souches appartenant à des groupes invasifs étaient capables de coloniser des sites distants. Nous avons montré que la protéine OspC des groupes invasifs fixe avec une meilleure affinité le plasminogène humain.PARIS5-BU-Necker : Fermée (751152101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Genetic Diversity among Borrelia Strains Determined by Single-Strand Conformation Polymorphism Analysis of the ospC Gene and Its Association with Invasiveness

    No full text
    Lyme borreliosis (LB) is a tick-borne spirochetal infection caused by three Borrelia species: Borrelia afzelii, B. garinii, and B. burgdorferi sensu stricto. LB evolves in two stages: a skin lesion called erythema migrans and later, different disseminated forms (articular, neurological, cardiac…). Previous research based on analysis of ospC sequences allowed the definition of 58 groups (divergence of <2% within a group and >8% between groups). Only 10 of these groups include all of the strains isolated from disseminated forms that are considered invasive. The aim of this study was to determine whether or not invasive strains belong to restricted ospC groups by testing human clinical strains isolated from disseminated forms. To screen for ospC genetic diversity, we used single-strand conformation polymorphism (SSCP) analysis. Previously known ospC sequences from 44 different strains were first tested, revealing that each ospC group had a characteristic SSCP pattern. Therefore, we studied 80 disseminated-form isolates whose ospC sequences were unknown. Of these, 28 (35%) belonged to previously known invasive groups. Moreover, new invasive groups were identified: six of B. afzelii, seven of B. garinii, and one of B. burgdorferi sensu stricto. This study confirmed that invasive strains are not distributed among all 69 ospC groups but belong to only 24 groups. This suggests that OspC may be involved in the invasiveness of B. burgdorferi

    Detection and Identification of Ehrlichia spp. in Ticks Collected in Tunisia and Morocco

    No full text
    A broad-range 16S rRNA gene PCR assay followed by partial sequencing of the 16S rRNA gene was used for the detection of members of the family Anaplasmataceae in ticks in North Africa. A total of 418 questing Ixodes ricinus ticks collected in Tunisia and Morocco, as well as 188 Rhipicephalus ticks from dogs and 52 Hyalomma ticks from bovines in Tunisia, were included in this study. Of 324 adult I. ricinus ticks, 16.3% were positive for Ehrlichia spp., whereas only 3.4 and 2.8% of nymphs and larvae, respectively, were positive. A large heterogeneity was observed in the nucleotide sequences. Partial sequences identical to that of the agent of human granulocytic ehrlichiosis (HGE) were detected in I. ricinus and Hyalomma detritum, whereas partial sequences identical to that of Anaplasma platys were detected in Rhipicephalus sanguineus. However, variants of Anaplasma, provisionally designated Anaplasma-like, were predominant in the I. ricinus tick population in Maghreb. Otherwise, two variants of the genus Ehrlichia were detected in I. ricinus and H. detritum. Surprisingly, a variant of Wolbachia pipientis was evidenced from I. ricinus in Morocco. These results emphasized the potential risk of tick bites for human and animal populations in North Africa

    Strain Typing of Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii by Using Multiple-Locus Variable-Number Tandem Repeat Analysis

    Get PDF
    Human Lyme borreliosis (LB) is the most prevalent arthropod-borne infection in temperate climate zones around the world and is caused by Borrelia spirochetes. We have identified 10 variable-number tandem repeat (VNTR) loci present within the genome of Borrelia burgdorferi and subsequently developed a multiple-locus VNTR analysis (MLVA) typing system for this disease agent. We report here the successful application of MLVA for strain discrimination among a group of 41 globally diverse Borrelia isolates including B. burgdorferi, B. afzelii, and B. garinii. PCR assays displayed diversity at these loci, with total allele numbers ranging from two to nine and Nei's diversity (D) values ranging from 0.10 to 0.87. The average D value was 0.53 across all VNTR loci. A clear correlation exists between the repeat copy number and the D value (r = 0.62) or the number of alleles (r = 0.93) observed across diverse strains. Cluster analysis by the unweighted pair-group method with arithmetic means resolved the 30 observed unique Borrelia genotypes into five distinct groups. B. burgdorferi, B. afzelii, and B. garinii clustered into distinct affiliations, consistent with current 16S rRNA phylogeny studies. Genetic similarity and diversity suggest that B. afzelii and B. garinii are close relatives and were perhaps recently derived from B. burgdorferi. MLVA provides both phylogenetic relationships and additional resolution to discriminate among strains of Borrelia species. This new level of strain identification and discrimination will allow more detailed epidemiological and phylogenetic analysis in future studies
    corecore