130 research outputs found
KIC 4150611: a rare multi-eclipsing quintuple with a hybrid pulsator
We present the results of our analysis of KIC 4150611 (HD 181469) - an
interesting, bright quintuple system that includes a hybrid
Sct/ Dor pulsator. Four periods of eclipses - 94.2, 8.65, 1.52 and 1.43
d - have been observed by the Kepler satellite, and three point sources (A, B,
and C) are seen in high angular resolution images.
From spectroscopic observations made with the HIDES spectrograph attached to
the 1.88-m telescope of the Okayama Astrophysical Observatory (OAO), for the
first time we calculated radial velocities (RVs) of the component B - a pair of
G-type stars - and combined them with Kepler photometry in order to obtain
absolute physical parameters of this pair. We also managed to directly measure
RVs of the pulsator, also for the first time. Additionally, we modelled the
light curves of the 1.52 and 1.43-day pairs, and measured their eclipse timing
variations (ETVs). We also performed relative astrometry and photometry of
three sources seen on the images taken with the NIRC2 camera of the Keck II
telescope. Finally, we compared our results with theoretical isochrones.
The brightest component Aa is the hybrid pulsator, transited every 94.2 days
by a pair of K/M-type stars (Ab1+Ab2), which themselves form a 1.52-day
eclipsing binary. The components Ba and Bb are late G-type stars, forming
another eclipsing pair with a 8.65 day period. Their masses and radii are
M, R for the
primary, and M, R
for the secondary. The remaining period of 1.43 days is possibly related to a
faint third star C, which itself is most likely a background object. The
system's properties are well-represented by a 35 Myr isochrone. There are also
hints of additional bodies in the system.Comment: 14 pages, 15 figures, 7 tables, to appear in A&A, abstract modified
in order to fit the arXiv limi
Ground-layer wavefront reconstruction from multiple natural guide stars
Observational tests of ground layer wavefront recovery have been made in open
loop using a constellation of four natural guide stars at the 1.55 m Kuiper
telescope in Arizona. Such tests explore the effectiveness of wide-field seeing
improvement by correction of low-lying atmospheric turbulence with ground-layer
adaptive optics (GLAO). The wavefronts from the four stars were measured
simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x
5 array of square subapertures across the pupil of the telescope, allowing for
wavefront reconstruction up to the fifth radial Zernike order. We find that the
wavefront aberration in each star can be roughly halved by subtracting the
average of the wavefronts from the other three stars. Wavefront correction on
this basis leads to a reduction in width of the seeing-limited stellar image by
up to a factor of 3, with image sharpening effective from the visible to near
infrared wavelengths over a field of at least 2 arc minutes. We conclude that
GLAO correction will be a valuable tool that can increase resolution and
spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.
Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars
We discuss two multiple star systems that host known exoplanets: HD 2638 and
30 Ari B. Adaptive optics imagery revealed an additional stellar companion to
both stars. We collected multi-epoch images of the systems with Robo-AO and the
PALM-3000 adaptive optics systems at Palomar Observatory and provide relative
photometry and astrometry. The astrometry indicates that the companions share
common proper motion with their respective primaries. Both of the new
companions have projected separations less than 30 AU from the exoplanet host
star. Using the projected separations to compute orbital periods of the new
stellar companions, HD 2638 has a period of 130 yrs and 30 Ari B has a period
of 80 years. Previous studies have shown that the true period is most likely
within a factor of three of these estimated values. The additional component to
the 30 Ari makes it the second confirmed quadruple system known to host an
exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion
strengthens the connection between hot Jupiters and binary stars. We place the
systems on a color-magnitude diagram and derive masses for the companions which
turn out to be roughly 0.5 solar mass stars.Comment: Accepted to Astronomical Journal, 16 pages, 5 Figure
Laser Guide Stars for Extremely Large Telescopes: Efficient Shack-Hartmann Wavefront Sensor Design using Weighted center-of-gravity algorithm
Over the last few years increasing consideration has been given to the study
of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by
the atmosphere in optical and near-infrared astronomical observations from the
ground. A possible method for the generation of a LGS is the excitation of the
Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since
the Sodium layer is approximately 10 km thick, the artificial reference source
looks elongated, especially when observed from the edge of a large aperture.
The spot elongation strongly limits the performance of the most common
wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront
sensor, for instance, decreases proportionally to the elongation (in a photon
noise dominated regime). To compensate for this effect a straightforward
solution is to increase the laser power, i.e. to increase the number of
detected photons per subaperture. The scope of the work presented in this paper
is twofold: an analysis of the performance of the Weighted Center of Gravity
algorithm for centroiding with elongated spots and the determination of the
required number of photons to achieve a certain average wavefront error over
the telescope aperture.Comment: 10 pages, 14 figure
Reconnaissance of the HR 8799 Exosolar System. I. Near-infrared Spectroscopy
We obtained spectra in the wavelength range λ = 995-1769 nm of all four known planets orbiting the star HR 8799. Using the suite of instrumentation known as Project 1640 on the Palomar 5 m Hale Telescope, we acquired data at two epochs. This allowed for multiple imaging detections of the companions and multiple extractions of low-resolution (R ~ 35) spectra. Data reduction employed two different methods of speckle suppression and spectrum extraction, both yielding results that agree. The spectra do not directly correspond to those of any known objects, although similarities with L and T dwarfs are present, as well as some characteristics similar to planets such as Saturn. We tentatively identify the presence of CH_4 along with NH_3 and/or C_2H_2, and possibly CO_2 or HCN in varying amounts in each component of the system. Other studies suggested red colors for these faint companions, and our data confirm those observations. Cloudy models, based on previous photometric observations, may provide the best explanation for the new data presented here. Notable in our data is that these presumably co-eval objects of similar luminosity have significantly different spectra; the diversity of planets may be greater than previously thought. The techniques and methods employed in this paper represent a new capability to observe and rapidly characterize exoplanetary systems in a routine manner over a broad range of planet masses and separations. These are the first simultaneous spectroscopic observations of multiple planets in a planetary system other than our own
Five Planets Transiting a Ninth Magnitude Star
The Kepler mission has revealed a great diversity of planetary systems and
architectures, but most of the planets discovered by Kepler orbit faint stars.
Using new data from the K2 mission, we present the discovery of a five planet
system transiting a bright (V = 8.9, K = 7.7) star called HIP 41378. HIP 41378
is a slightly metal-poor late F-type star with moderate rotation (v sin(i) = 7
km/s) and lies at a distance of 116 +/- 18 from Earth. We find that HIP 41378
hosts two sub-Neptune sized planets orbiting 3.5% outside a 2:1 period
commensurability in 15.6 and 31.7 day orbits. In addition, we detect three
planets which each transit once during the 75 days spanned by K2 observations.
One planet is Neptune sized in a likely ~160 day orbit, one is sub-Saturn sized
likely in a ~130 day orbit, and one is a Jupiter sized planet in a likely ~1
year orbit. We show that these estimates for the orbital periods can be made
more precise by taking into account dynamical stability considerations. We also
calculate the distribution of stellar reflex velocities expected for this
system, and show that it provides a good target for future radial velocity
observations. If a precise orbital period can be determined for the outer
Jovian planet through future observations, it will be an excellent candidate
for follow-up transit observations to study its atmosphere and measure its
oblateness.Comment: Accepted by ApJL. 12 pages, 6 figures, 2 table
Reconnaissance of the HR 8799 Exosolar System II: Astrometry and Orbital Motion
We present an analysis of the orbital motion of the four sub-stellar objects
orbiting HR8799. Our study relies on the published astrometric history of this
system augmented with an epoch obtained with the Project 1640 coronagraph +
Integral Field Spectrograph (IFS) installed at the Palomar Hale telescope. We
first focus on the intricacies associated with astrometric estimation using the
combination of an Extreme Adaptive Optics system (PALM-3000), a coronagraph and
an IFS. We introduce two new algorithms. The first one retrieves the stellar
focal plane position when the star is occulted by a coronagraphic stop. The
second one yields precise astrometric and spectro-photometric estimates of
faint point sources even when they are initially buried in the speckle noise.
The second part of our paper is devoted to studying orbital motion in this
system. In order to complement the orbital architectures discussed in the
literature, we determine an ensemble of likely Keplerian orbits for HR8799bcde,
using a Bayesian analysis with maximally vague priors regarding the overall
configuration of the system. While the astrometric history is currently too
scarce to formally rule out coplanarity, HR8799d appears to be misaligned with
respect to the most likely planes of HR8799bce orbits. This misalignment is
sufficient to question the strictly coplanar assumption made by various authors
when identifying a Laplace resonance as a potential architecture. Finally, we
establish a high likelihood that HR8799de have dynamical masses below 13 M_Jup
using a loose dynamical survival argument based on geometric close encounters.
We illustrate how future dynamical analyses will further constrain dynamical
masses in the entire system.Comment: 26 pages, 18 figure
Electric Field Conjugation with the Project 1640 coronagraph
The Project 1640 instrument on the 200-inch Hale telescope at Palomar
Observatory is a coronagraphic instrument with an integral field spectrograph
at the back end, designed to find young, self-luminous planets around nearby
stars. To reach the necessary contrast for this, the PALM-3000 adaptive optics
system corrects for fast atmospheric speckles, while CAL, a phase-shifting
interferometer in a Mach-Zehnder configuration, measures the quasistatic
components of the complex electric field in the pupil plane following the
coronagraphic stop. Two additional sensors measure and control low-order modes.
These field measurements may then be combined with a system model and data
taken separately using a white-light source internal to the AO system to
correct for both phase and amplitude aberrations. Here, we discuss and
demonstrate the procedure to maintain a half-plane dark hole in the image plane
while the spectrograph is taking data, including initial on-sky performance.Comment: 9 pages, 7 figures, in Proceedings of SPIE, 8864-19 (2013
Elusive Majority of Young Moving Groups. I. Young Binaries and Lithium-rich Stars in the Solar Neighborhood
Young stars in the solar neighborhood serve as nearby probes of stellar evolution and represent promising targets to directly image self-luminous giant planets. We have carried out an all-sky search for late-type (≈K7–M5) stars within 100 pc selected primarily on the basis of activity indicators from the Galaxy Evolution Explorer and ROSAT. Approximately 2000 active and potentially young stars are identified, of which we have followed up over 600 with low-resolution optical spectroscopy and over 1000 with diffraction-limited imaging using Robo-AO at the Palomar 1.5 m telescope. Strong lithium is present in 58 stars, implying ages spanning ≈10–200 Myr. Most of these lithium-rich stars are new or previously known members of young moving groups including TWA, β Pic, Tuc-Hor, Carina, Columba, Argus, AB Dor, Upper Centaurus Lupus, and Lower Centaurus Crux; the rest appear to be young low-mass stars without connections to established kinematic groups. Over 200 close binaries are identified down to 0.”2—the vast majority of which are new—and will be valuable for dynamical mass measurements of young stars with continued orbit monitoring in the future
- …
