2 research outputs found

    Protein-templated reactions using DNA-antibody conjugates

    Get PDF
    DNA-templated chemical reactions have found wide applications in drug discovery, programmed multistep synthesis, nucleic acid detection, and targeted drug delivery. The control of these reactions has, however, been limited to nucleic acid hybridization as a means to direct the proximity between reactants. In this work a system capable of translating protein-protein binding events into a DNA-templated reaction which leads to the covalent formation of a product is introduced. Protein-templated reactions by employing two DNA-antibody conjugates that are both able to recognize the same target protein and to colocalize a pair of reactant DNA strands able to undergo a click reaction are achieved. Two individual systems, each responsive to human serum albumin (HSA) and human IgG, are engineered and it is demonstrated that, while no reaction occurs in the absence of proteins, both protein-templated reactions can occur simultaneously in the same solution without any inter-system crosstalk

    Synthetic DNA-based Swimmers Driven by Enzyme Catalysis

    No full text
    Here, we report DNA-based synthetic nanostructures decorated with enzymes (hereafter referred to as DNA-enzyme swimmers) that self-propel by converting the enzymatic substrate to the product in solution. The DNA-enzyme swimmers are obtained from tubular DNA structures that self-assemble spontaneously by the hybridization of DNA tiles. We functionalize these DNA structures with two different enzymes, urease and catalase, and show that they exhibit concentration-dependent movement and enhanced diffusion upon addition of the enzymatic substrate (i.e., urea and H2O2). To demonstrate the programmability of such DNA-based swimmers, we also engineer DNA strands that displace the enzyme from the DNA scaffold, thus acting as molecular "brakes" on the DNA swimmers. These results serve as a first proof of principle for the development of synthetic DNA-based enzyme-powered swimmers that can self-propel in fluids
    corecore