95 research outputs found

    A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates

    Get PDF
    BACKGROUND: Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. RESULTS: Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27–35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. CONCLUSIONS: The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production

    Hypotensive Anesthesia versus Normotensive Anesthesia during Major Maxillofacial Surgery: A Review of the Literature

    Get PDF
    Steady blood pressure within normal limits during surgery is one of the markers of the ideal and skillful anesthesia. Yet, reduced blood pressure is advantageous in some settings because it can contribute to a reduction in overall blood loss and improve the surgical field conditions. Controlled hypotension during anesthesia or hypotensive anesthesia is often used in major maxillofacial operations. Since hypotensive anesthesia carries the risk of hypoperfusion to important organs and tissues, mainly the brain, heart, and kidneys, it cannot be applied safely in all patients. In this paper we review the medical literature regarding hypotensive anesthesia during major maxillofacial surgery, the means to achieve it, and the risks and benefits of this technique, in comparison to normotensive anesthesia

    Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation

    Get PDF
    BACKGROUND: Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases), polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. RESULTS: In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. CONCLUSIONS: The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules

    Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions

    Get PDF
    This work was supported in part by the European Union, Area NMP.2013.1.1–2: Self-assembly of naturally occurring nanosystems: CellulosomePlus Project number: 604530, and by the EU Seventh Framework Programme (FP7 2007–2013) under the WallTraC project (Grant Agreement no 263916), and BioStruct-X (grant agreement no 283570). This paper reflects the author’s views only. The European Community is not liable for any use that may be made of the information contained herein. CMGAF is also supported by Fundação para a Ciência e a Tecnologia (Lisbon, Portugal) through grants PTDC/BIA-PRO/103980/2008 and EXPL/BIA-MIC/1176/2012. EAB is also funded by a grant (No. 1349/13) from the Israel Science Foundation (ISF), Jerusalem, Israel and by a grant (No. 2013284) from the U.S.-Israel Binational Science Foundation (BSF). E.A.B. is the incumbent of The Maynard I. and Elaine Wishner Chair of Bio-organic Chemistry.Peer reviewedPublisher PD

    Sex differences in heart failure patients assessed by combined echocardiographic and cardiopulmonary exercise testing

    Get PDF
    BackgroundWe aimed to test the differences in peak VO2 between males and females in patients diagnosed with heart failure (HF), using combined stress echocardiography (SE) and cardiopulmonary exercise testing (CPET).MethodsPatients who underwent CPET and SE for evaluation of dyspnea or exertional intolerance at our institution, between January 2013 and December 2017, were included and retrospectively assessed. Patients were divided into three groups: HF with preserved ejection fraction (HFpEF), HF with mildly reduced or reduced ejection fraction (HFmrEF/HFrEF), and patients without HF (control). These groups were further stratified by sex.ResultsOne hundred seventy-eight patients underwent CPET-SE testing, of which 40% were females. Females diagnosed with HFpEF showed attenuated increases in end diastolic volume index (P = 0.040 for sex × time interaction), significantly elevated E/e' (P < 0.001), significantly decreased left ventricle (LV) end diastolic volume:E/e ratio (P = 0.040 for sex × time interaction), and lesser increases in A-VO2 difference (P = 0.003 for sex × time interaction), comparing to males with HFpEF. Females diagnosed with HFmrEF/HFrEF showed diminished increases in end diastolic volume index (P = 0.050 for sex × time interaction), mostly after anaerobic threshold was met, comparing to males with HFmrEF/HFrEF. This resulted in reduced increases in peak stroke volume index (P = 0.010 for sex × time interaction) and cardiac output (P = 0.050 for sex × time interaction).ConclusionsCombined CPET-SE testing allows for individualized non-invasive evaluation of exercise physiology stratified by sex. Female patients with HF have lower exercise capacity compared to men with HF. For females diagnosed with HFpEF, this was due to poorer LV compliance and attenuated peripheral oxygen extraction, while for females diagnosed with HFmrEF/HFrEF, this was due to attenuated increase in peak stroke volume and cardiac output. As past studies have shown differences in clinical outcomes between females and males, this study provides an essential understanding of the differences in exercise physiology in HF patients, which may improve patient selection for targeted therapeutics
    corecore