374 research outputs found

    Comparison of non-crossing perturbative approach and generalized projection method for strongly coupled spin-fermion systems at low doping

    Full text link
    We analyze the two-dimensional spin-fermion model in the strong coupling regime relevant to underdoped cuprates. We recall the set of general sumrules that relate moments of spectral density and the imaginary part of fermion self-energy with static correlation functions. We show that two-pole approximation of projection method satisfies the sumrules for first four moments of spectral density and gives an exact upper bound for quasiparticle energy near the band bottom. We prove that non-crossing approximation that is often made in perturbative consideration of the model violates the sumrule for third moment of spectral density. This leads to wrong position of lowest quasiparticle band. On the other hand, the projection method is inadequate in weak coupling limit because of approximate treatment of kinetic energy term. We propose a generalization of projection method that overcomes this default and give the fermion self-energy that correctly behaves both in weak and strong coupling limits.Comment: 9 pages, 4 EPS figures, RevTe

    Non-rigid hole band in the extended t-J model

    Full text link
    The dispersion of one hole in an extended tt-JJ model with additional hopping terms to second and third nearest neighbours and a frustration term in the exchange part has been investigated. Two methods, a Green's function projection technique describing a magnetic polaron of minimal size and the exact diagonalization of a 4∗44*4 lattice, have been applied, showing reasonable agreement among each other. Using additional hopping integrals which are characteristic for the CuO2_2 plane in cuprates we find in the nonfrustrated case an isotropic minimum of the dispersion at the point (π/2,π/2)(\pi/2,\pi/2) in kk-space in good coincidence with recent angle-resolved photoemission results for the insulating compound Sr2_2CuO2_2Cl2_2. Including frustration or finite temperature which shall simulate the effect of doping, the dispersion is drastically changed such that a flat region and an extended saddle point may be observed between (π/2,0)(\pi/2,0) and (π,0)(\pi,0) in agreement with experimental results for the optimally doped cuprates.Comment: 14 pages, LaTeX, 6 figures on request, submitted to Zeitschrift fuer Physi

    d-Wave Pairing in an Ensemble of Spin Polaron Quasiparticles in the Spin-Fermion Model of the Electronic Structure of the CuO2 Plane

    Full text link
    It is demonstrated for the first time that the strong coupling between spin moments of copper ions and oxygen holes, which arises upon hybridazation mixing of two hole subsystems in the Emery model, not only affects the formation of spin polaron quasiparticles but also ensures effective attraction between them via the exchange interaction. This results in the Cooper instability with d-wave pairing in a 2D ensemble of spin polaron quasiparticles. The T-x-phase diagram obtained using this approach agrees well with the available experimental data
    • …
    corecore