651 research outputs found

    Proposing "b-Parity" - a New Approximate Quantum Number in Inclusive b-jet Production - as an Efficient Probe of New Flavor Physics

    Full text link
    We consider the inclusive reaction \ell^+ \ell^- -> nb +X (n = number of b-jets) in lepton colliders for which we propose a useful approximately conserved quantum number b_P=(-1)^n that we call b-Parity (b_P). We make the observation that the Standard Model (SM) is essentially b_P-even since SM b_P-violating signals are necessarily CKM suppressed. In contrast new flavor physics can produce b_P=-1 signals whose only significant SM background is due to b-jet misidentification. Thus, we show that b-jet counting, which relies primarily on b-tagging, becomes a very simple and sensitive probe of new flavor physics (i.e., of b_P-violation).Comment: 5 pages using revtex, 2 figures embadded in the text using epsfig. As will appear in Phys.Rev.Lett.. Considerable improvement was made in the background calculation as compared to version 1, by including purity parameters, QCD effects and 4-jets processe

    Efficiency at optimal work from finite reservoirs: a probabilistic perspective

    Full text link
    We revisit the classic thermodynamic problem of maximum work extraction from two arbitrary sized hot and cold reservoirs, modelled as perfect gases. Assuming ignorance about the extent to which the process has advanced, which implies an ignorance about the final temperatures, we quantify the prior information about the process and assign a prior distribution to the unknown temperature(s). This requires that we also take into account the temperature values which are regarded to be unphysical in the standard theory, as they lead to a contradiction with the physical laws. Instead in our formulation, such values appear to be consistent with the given prior information and hence are included in the inference. We derive estimates of the efficiency at optimal work from the expected values of the final temperatures, and show that these values match with the exact expressions in the limit when any one of the reservoirs is very large compared to the other. For other relative sizes of the reservoirs, we suggest a weighting procedure over the estimates from two valid inference procedures, that generalizes the procedure suggested earlier in [J. Phys. A: Math. Theor. {\bf 46}, 365002 (2013)]. Thus a mean estimate for efficiency is obtained which agrees with the optimal performance to a high accuracy.Comment: 14 pages, 6 figure

    Spontaneous Symmetry Breaking through Mixing

    Get PDF
    We discuss a model, in which the negative mass square needed in the Higgs mechanism is generated by mixing with a heavy scalar. We have two scalar doublets in the standard model. Phenomenological properties of the heavy new scalar are discussed. The heavy scalar can be detected by the LHC.Comment: 4 page

    New scalar resonances from sneutrino-Higgs mixing in supersymmetry with small lepton number (R-parity) violation

    Full text link
    We consider new s-channel scalar exchanges in top quark and massive gauge-bosons pair production in e+e- collisions, in supersymmetry with a small lepton number violation. We show that a soft bilinear lepton number violating term in the scalar potential which mixes the Higgs and the slepton fields can give rise to a significant scalar resonance enhancement in e+e- -> ZZ, W+W- and in e+e- -> t t(bar). The sneutrino-Higgs mixed state couples to the incoming light leptons through its sneutrino component and to either the top quark or the massive gauge bosons through its Higgs component. Such a scalar resonance in these specific production channels cannot result from trilinear Yukawa-like R-parity violation alone, and may, therefore, stand as strong evidence for the existence of R-parity violating bilinears in the supersymmetric scalar potential. We use the LEP2 measurements of the WW and ZZ cross-sections to place useful constrains on this scenario, and investigate the expectations for the sensitivity of a future linear collider to these signals. We find that signals of these scalar resonances, in particular in top-pair production, are well within the reach of linear colliders in the small lepton number violation scenario.Comment: 22 pages in revtex, 10 figures embadded in the text using epsfi

    Production and decay of the neutral top-pion in high energy e+e−e^{+}e^{-} colliders

    Full text link
    We study the production and decay of the neutral top-pion πt0\pi_{t}^{0} predicted by topcolor-assisted technicolor(TC2) theory. Our results show that, except the dominant decay modes bbˉb\bar{b}, tˉc\bar{t}c and gggg, the πt0\pi_{t}^{0} can also decay into γγ\gamma\gamma and ZγZ \gamma modes. It can be significantly produced at high energy e+e−e^{+}e^{-} collider(LC) experiments via the processes e+e−→πt0γe^{+}e^{-}\to \pi_{t}^{0}\gamma and e+e−→Zπt0e^{+}e^{-}\to Z\pi_{t}^{0}. We further calculate the production cross sections of the processes e+e−→γπt0→γtˉce^{+}e^{-}\to\gamma\pi_{t}^{0}\to\gamma\bar{t}c and e+e−→Zπt0→Ztˉce^{+}e^{-}\to Z\pi_{t}^{0}\to Z\bar{t}c. We find that the signatures of the neutral top-pion πt0\pi_{t}^{0} can be detected via these processes.Comment: Latex file, 13 Pages, 6 eps figures. to be published in Phys.Rev.

    The flavor changing top decay t-->c+sneutrino or sneutrino-->t+c(bar) in the MSSM without R-parity

    Full text link
    Widths for the new flavor changing top quark decay t-->c+sneutrino or for the reversed sneutrino decay sneutrino-->t+c(bar) are calculated in the MSSM without R-parity conservation. For large \tan\beta, e.g., \tan\beta ~ m_t/m_b ~ 40, Br(t-->c+sneutrino) > 10^{-5} or Br(sneutrino-->t+c(bar)) > 10^{-6} in a relatively wide range of the supersymmetric parameter space as long as there is more than one non-zero R-parity violating coupling. In the best cases, with a typical squark mass around 100 GeV, we find that Br(t-->c+sneutrino) ~ 10^{-4} - 10^{-3} or Br(sneutrino-->t+c(bar)) ~ 10^{-5} - 10^{-4}. For \tan\beta ~ O(1) the corresponding branching ratios for both top or sneutrino decays are too small to be measured at the LHC. Therefore, the decays t-->c+sneutrino or sneutrino-->t+c(bar) appear to be sensitive to \tan\beta and may be detected at the LHC. The branching ratios of the corresponding decays to an up quark instead of a charm quark, e.g., t-->u+sneutrino or sneutrino-->t+u(bar), may also be similar.Comment: 23 pages, plain latex, 8 figures embadded in the text using epsfi
    • …
    corecore