312 research outputs found
Free Energy of an Inhomogeneous Superconductor: a Wave Function Approach
A new method for calculating the free energy of an inhomogeneous
superconductor is presented. This method is based on the quasiclassical limit
(or Andreev approximation) of the Bogoliubov-de Gennes (or wave function)
formulation of the theory of weakly coupled superconductors. The method is
applicable to any pure bulk superconductor described by a pair potential with
arbitrary spatial dependence, in the presence of supercurrents and external
magnetic field. We find that both the local density of states and the free
energy density of an inhomogeneous superconductor can be expressed in terms of
the diagonal resolvent of the corresponding Andreev Hamiltonian, resolvent
which obeys the so-called Gelfand-Dikii equation. Also, the connection between
the well known Eilenberger equation for the quasiclassical Green's function and
the less known Gelfand-Dikii equation for the diagonal resolvent of the Andreev
Hamiltonian is established. These results are used to construct a general
algorithm for calculating the (gauge invariant) gradient expansion of the free
energy density of an inhomogeneous superconductor at arbitrary temperatures.Comment: REVTeX, 28 page
Theory of Scanning Tunneling Spectroscopy of Magnetic-Field-Induced Discrete Nodal States in a D-Wave Superconductor
In the presence of an external magnetic field, the low lying elementary
excitations of a d-wave superconductor have quantized energy and their momenta
are locked near the node direction. It is argued that these discrete states can
most likely be detected by a local probe, such as a scanning tunneling
microscope. The low temperature local tunneling conductance on the Wigner-Seitz
cell boundaries of the vortex lattice is predicted to show peaks spaced as . The peak is anomalous, and it is present only
if the superconducting order parameter changes sign at certain points on the
Fermi surface. Away from the cell boundary, where the superfluid velocity is
nonzero, each peak splits, in general, into four peaks, corresponding to the
number of nodes in the order parameter.Comment: RevTeX 3.0, 4 pages, 3 figures (included
Ras Inhibition Induces Insulin Sensitivity and Glucose Uptake
BACKGROUND: Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2 diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose uptake, as well as its influence on type 2 diabetes development. METHODS AND FINDINGS: The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-molecule Ras inhibitor. The involvement of IκB and NF-κB in Ras-inhibited glucose uptake was investigated by immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IκB expression accompanied by decreased expression of NF-κB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of hyperglycemia and the levels of serum insulin were significantly decreased. CONCLUSIONS: Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes
Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors
Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis. In particular, macropinocytosis can be a nutrient source for pancreatic cancer cells, but it is not fully understood how the tumor environment influences metabolic phenotypes and whether macropinocytosis supports the maintenance of amino acid levels within pancreatic tumors. Here we utilize miniaturized plasma exchange to deliver labeled albumin to tissues in live mice, and we demonstrate that breakdown of albumin contributes to the supply of free amino acids in pancreatic tumors. We also deliver albumin directly into tumors using an implantable microdevice, which was adapted and modified from ref. 9. Following implantation, we directly observe protein catabolism and macropinocytosis in situ by pancreatic cancer cells, but not by adjacent, non-cancerous pancreatic tissue. In addition, we find that intratumoral inhibition of macropinocytosis decreases amino acid levels. Taken together, these data suggest that pancreatic cancer cells consume extracellular protein, including albumin, and that this consumption serves as an important source of amino acids for pancreatic cancer cells in vivo.National Science Foundation (U.S.) (Grant T32GM007287)National Cancer Institute (U.S.) (Grant F30CA183474)National Institute of General Medical Sciences (U.S.) (Award T32GM007753)National Institutes of Health (U.S.) (Grant P30CA1405141)National Institutes of Health (U.S.) (Grant R01CA168653
K-Ras Mediated Murine Epidermal Tumorigenesis Is Dependent upon and Associated with Elevated Rac1 Activity
A common goal for potential cancer therapies is the identification of differences in protein expression or activity that would allow for the selective targeting of tumor vs. normal cells. The Ras proto-oncogene family (K-Ras, H-Ras and N-Ras) are amongst the most frequently mutated genes in human cancers. As a result, there has been substantial effort dedicated to determining which pathways are activated by Ras signaling and, more importantly, which of these contribute to cancer. Although the most widely studied Ras-regulated signaling pathway is the Raf/mitogen-activated protein kinase cascade, previous research in model systems has revealed that the Rac1 GTP-binding protein is also required for Ras-induced biological responses. However, what have been lacking are rigorous in vivo Rac1 target validation data and a clear demonstration that in Ras-driven hyperplastic lesions, Rac1 activity is increased. Using a combination of genetically-modified mouse models that allow for the tissue-selective activation or deletion of signaling molecules and an activation-state sensitive Rac1 antibody that detects GTP-bound Rac1, we found that Rac1 contributes to K-Ras induced epidermal papilloma initiation and growth and that Rac1 activity is elevated by oncogenic K-Ras in vivo. Previously, it was not practical to assess Rac1 activation status in the most commonly used format for clinical tumor specimens, formalin-fixed paraffin embedded (FFPE) tissues samples. However, this study clearly demonstrates that Rac1 is essential for K-Ras driven epithelial cell hyperproliferation and that Rac1 activity is elevated in tissues expressing mutant oncogenic K-Ras, while also characterizing the activation-state specific Rac1-GTP antibody as a probe to examine Rac1 activation status in FFPE samples. Our findings will facilitate further research on the status of Rac1 activity in human tumors and will help to define the tumor types of the patient population that could potentially benefit from therapies targeting Rac activation or downstream effector signaling pathways
Chlamydophila pneumoniae induces expression of Toll-like Receptor 4 and release of TNF-α and MIP-2 via an NF-κB pathway in rat type II pneumocytes
BACKGROUND: The role of alveolar type II cells in the regulation of innate and adaptive immunity is unclear. Toll-like receptors (TLRs) have been implicated in host defense. The purpose of the present study was to investigate whether Chlamydophila pneumoniae (I) alters the expression of TLR2 and/orTLR4 in type II cells in a (II) Rho-GTPase- and (III) NF-κB-dependent pathway, subsequently (IV) leading to the production of (IV) pro-inflammatory TNF-α and MIP-2. METHODS: Isolated rat type II pneumocytes were incubated with C. pneumoniae after pre-treatment with calcium chelator BAPTA-AM, inhibitors of NF-κB (parthenolide, SN50) or with a specific inhibitor of the Rho-GTPase (mevastatin). TLR2 and TLR4 mRNA expressions were analyzed by PCR. Activation of TLR4, Rac1, RhoA protein and NF-κB was determined by Western blotting and confocal laser scan microscopy (CLSM) and TNF-α and MIP-2 release by ELISA. RESULTS: Type II cells constitutively expressed TLR4 and TLR2 mRNA. A prominent induction of TLR4 but not TLR2 mRNA was detected after 2 hours of incubation with C. pneumoniae. The TLR4 protein expression reached a peak at 30 min, began to decrease within 1–2 hours and peaked again at 3 hours. Incubation of cells with heat-inactivated bacteria (56°C for 30 min) significantly reduced the TLR4 expression. Treated bacteria with polymyxin B (2 μg/ml) did not alter TLR4 expression. C. pneumoniae-induced NF-κB activity was blocked by TLR4 blocking antibodies. TLR4 mRNA and protein expression were inhibited in the presence of BAPTA-AM, SN50 or parthenolide. TNF-α and MIP-2 release was increased in type II cells in response to C. pneumoniae, whereas BAPTA-AM, SN50 or parthenolide decreased the C. pneumoniae-induced TNF-α and MIP-2 release. Mevastatin inhibited C. pneumoniae-mediated Rac1, RhoA and TLR4 expression. CONCLUSION: The TLR4 protein expression in rat type II cells is likely to be mediated by a heat-sensitive C. pneumoniae protein that induces a fast Ca(2+)-mediated NF-κB activity, necessary for maintenance of TLR4 expression and TNF-α and MIP-2 release through possibly Rac and Rho protein-dependent mechanism. These results indicate that type II pneumocytes play an important role in the innate pulmonary immune system and in inflammatory response mechanism of the alveolus
Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition
To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution
Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas
The MTA1 gene is a recently identified novel candidate breast cancer metastasis-associated gene which has been implicated in the signal transduction or regulation of gene expression. We examined the mRNA expression levels of the MTA1, the human homologue of the rat mta1 gene in 47 surgically resected oesophageal squamous cell carcinomas by quantitative reverse transcription polymerase chain reaction. The relative overexpression of MTA1 mRNA (tumour/normal ratio ≥ 2) was observed in 16 out of 47 (34.0%) oesophageal carcinomas. Oesophageal tumours overexpressing MTA1 mRNA (T/N ratio ≥ 2) showed significantly higher frequencies of adventitial invasion (P < 0.05) and lymph node metastasis (P < 0.05), and tended to have a higher rate of lymphatic involvement than the remaining tumours. Thus, the data suggest that the MTA1 gene might play an important role in invasion and metastasis of oesophageal carcinomas. © 1999 Cancer Research Campaig
- …