8,773 research outputs found
Anomalous Microfluidic Phonons Induced by the Interplay of Hydrodynamic Screening and Incompressibility
We investigate the acoustic normal modes ("phonons") of a 1D microfluidic
droplet crystal at the crossover between 2D flow and confined 1D plug flow. The
unusual phonon spectra of the crystal, which arise from long-range hydrodynamic
interactions, change anomalously under confinement. The boundaries induce
weakening and screening of the interactions, but when approaching the 1D limit
we measure a marked increase in the crystal sound velocity, a sign of
interaction strengthening. This non-monotonous behavior of the phonon spectra
is explained theoretically by the interplay of screening and plug flow.Comment: http://link.aps.org/doi/10.1103/PhysRevLett.99.124502
http://www.weizmann.ac.il/complex/tlusty/papers/PhysRevLett2007.pd
Quantified Derandomization of Linear Threshold Circuits
One of the prominent current challenges in complexity theory is the attempt
to prove lower bounds for , the class of constant-depth, polynomial-size
circuits with majority gates. Relying on the results of Williams (2013), an
appealing approach to prove such lower bounds is to construct a non-trivial
derandomization algorithm for . In this work we take a first step towards
the latter goal, by proving the first positive results regarding the
derandomization of circuits of depth .
Our first main result is a quantified derandomization algorithm for
circuits with a super-linear number of wires. Specifically, we construct an
algorithm that gets as input a circuit over input bits with
depth and wires, runs in almost-polynomial-time, and
distinguishes between the case that rejects at most inputs
and the case that accepts at most inputs. In fact, our
algorithm works even when the circuit is a linear threshold circuit, rather
than just a circuit (i.e., is a circuit with linear threshold gates,
which are stronger than majority gates).
Our second main result is that even a modest improvement of our quantified
derandomization algorithm would yield a non-trivial algorithm for standard
derandomization of all of , and would consequently imply that
. Specifically, if there exists a quantified
derandomization algorithm that gets as input a circuit with depth
and wires (rather than wires), runs in time at
most , and distinguishes between the case that rejects at
most inputs and the case that accepts at most
inputs, then there exists an algorithm with running time
for standard derandomization of .Comment: Changes in this revision: An additional result (a PRG for quantified
derandomization of depth-2 LTF circuits); rewrite of some of the exposition;
minor correction
Atom Chips: Fabrication and Thermal Properties
Neutral atoms can be trapped and manipulated with surface mounted microscopic
current carrying and charged structures. We present a lithographic fabrication
process for such atom chips based on evaporated metal films. The size limit of
this process is below 1m. At room temperature, thin wires can carry more
than 10A/cm current density and voltages of more than 500V. Extensive
test measurements for different substrates and metal thicknesses (up to 5
m) are compared to models for the heating characteristics of the
microscopic wires. Among the materials tested, we find that Si is the best
suited substrate for atom chips
Excitonic Funneling in Extended Dendrimers with Non-Linear and Random Potentials
The mean first passage time (MFPT) for photoexcitations diffusion in a
funneling potential of artificial tree-like light-harvesting antennae
(phenylacetylene dendrimers with generation-dependent segment lengths) is
computed. Effects of the non-linearity of the realistic funneling potential and
slow random solvent fluctuations considerably slow down the center-bound
diffusion beyond a temperature-dependent optimal size. Diffusion on a
disordered Cayley tree with a linear potential is investigated analytically. At
low temperatures we predict a phase in which the MFPT is dominated by a few
paths.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let
An atom fiber for guiding cold neutral atoms
We present an omnidirectional matter wave guide on an atom chip. The
rotational symmetry of the guide is maintained by a combination of two current
carrying wires and a bias field pointing perpendicular to the chip surface. We
demonstrate guiding of thermal atoms around more than two complete turns along
a spiral shaped 25mm long curved path (curve radii down to 200m) at
various atom--surface distances (35-450m). An extension of the scheme for
the guiding of Bose-Einstein condensates is outlined
Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers
The center-bound excitonic diffusion on dendrimers subjected to several types
of non-homogeneous funneling potentials, is considered. We first study the
mean-first passage time (MFPT) for diffusion in a linear potential with
different types of correlated and uncorrelated random perturbations. Increasing
the funneling force, there is a transition from a phase in which the MFPT grows
exponentially with the number of generations , to one in which it does so
linearly. Overall the disorder slows down the diffusion, but the effect is much
more pronounced in the exponential compared to the linear phase. When the
disorder gives rise to uncorrelated random forces there is, in addition, a
transition as the temperature is lowered. This is a transition from a
high- regime in which all paths contribute to the MFPT to a low- regime
in which only a few of them do. We further explore the funneling within a
realistic non-linear potential for extended dendrimers in which the dependence
of the lowest excitonic energy level on the segment length was derived using
the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT
grows initially linearly with but crosses-over, beyond a molecular-specific
and -dependent optimal size, to an exponential increase. Finally we consider
geometrical disorder in the form of a small concentration of long connections
as in the {\it small world} model. Beyond a critical concentration of
connections the MFPT decreases significantly and it changes to a power-law or
to a logarithmic scaling with , depending on the strength of the funneling
force.Comment: 13 pages, 9 figure
Elasticity-driven Nanoscale Texturing in Complex Electronic Materials
Finescale probes of many complex electronic materials have revealed a
non-uniform nanoworld of sign-varying textures in strain, charge and
magnetization, forming meandering ribbons, stripe segments or droplets. We
introduce and simulate a Ginzburg-Landau model for a structural transition,
with strains coupling to charge and magnetization. Charge doping acts as a
local stress that deforms surrounding unit cells without generating defects.
This seemingly innocuous constraint of elastic `compatibility', in fact induces
crucial anisotropic long-range forces of unit-cell discrete symmetry, that
interweave opposite-sign competing strains to produce polaronic elasto-magnetic
textures in the composite variables. Simulations with random local doping below
the solid-solid transformation temperature reveal rich multiscale texturing
from induced elastic fields: nanoscale phase separation, mesoscale intrinsic
inhomogeneities, textural cross-coupling to external stress and magnetic field,
and temperature-dependent percolation. We describe how this composite textured
polaron concept can be valuable for doped manganites, cuprates and other
complex electronic materials.Comment: Preprin
The effects of related experiments
The effects of the experiment itself upon the obtained results and,
especially, the influence of a large number of experiments are extensively
discussed in the literature. We show that the important factor that stands at
the basis of these effects is that the involved experiments are related and not
independent and detached from each other. This relationship takes, as shown
here, different forms for different situations and is found in entirely
different physical regimes such as the quantum and classical ones.Comment: 27 pages, 6 figures, 1 table. One figure removed. Some former text
has been rewritten in compact and clearer way. Also the title change
Trapping and manipulating neutral atoms with electrostatic fields
We report on experiments with cold thermal Li atoms confined in combined
magnetic and electric potentials. A novel type of three-dimensional trap was
formed by modulating a magnetic guide using electrostatic fields. We observed
atoms trapped in a string of up to six individual such traps, a controlled
transport of an atomic cloud over a distance of 400m, and a dynamic
splitting of a single trap into a double well potential. Applications for
quantum information processing are discussed.Comment: 4 pages, 4 figure
- âŠ