5 research outputs found

    S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis

    Get PDF
    Rationale: A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. Objectives: The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. Methods: The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. Measurements and Main Results: We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. Conclusions: Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB

    Splenectomy for Solitary Splenic Metastasis in Recurrent Papillary Thyroid Cancer. A Case Report and Literature Review

    No full text
    Thyroid cancer is the most common endocrine malignancy, presenting with 23 500 new cases per year in the United States. About 7-23% of the patients will present recurrent metastases disease during follow-up. The classic variant of papillary carcinoma is less aggressive compared to its other variants like diffuse sclerosing, tall cell or columnar cell, and insular variants, and the sites to which this metastasizes is already well identified. Metastasis to the spleen is an extremely rare manifestation of papillary thyroid cancer. To date, only 3 cases have been reported in the literature. Herein, we present a 52-year-old male, who developed spleen metastases, 2.4 years after total thyroidectomy and central neck dissection followed by radioactive iodine ablation and seven months after treatment with sorafenib for lung metastases. The splenic lesion was detected in surveillance studies. This case highlights that splenic metastasis, although rare, may occur even in a patient with a locoregional and systemic controlled thyroid cancer and that it can be treated safely with surgical resection

    Chronic Stress Induces Structural Alterations in Splenic Lymphoid Tissue That Are Associated with Changes in Corticosterone Levels in Wistar-Kyoto Rats

    Get PDF
    Major depressive disorder patients present chronic stress and decreased immunity. The Wistar-Kyoto rat (WKY) is a strain in which the hypothalamic-pituitary-adrenal axis is overactivated. To determine whether chronic stress induces changes in corticosterone levels and splenic lymphoid tissue, 9-week-old male rats were subject to restraint stress (3 h daily), chemical stress (hydrocortisone treatment, 50 mg/Kg weight), mixed stress (restraint plus hydrocortisone), or control treatment (without stress) for 1, 4, and 7 weeks. The serum corticosterone levels by RIA and spleens morphology were analyzed. Corticosterone levels as did the structure, size of the follicles and morphology of the parenchyma (increase in red pulp) in the spleen, varied depending on time and type of stressor. These changes indicate that chronic stress alters the immune response in the spleen in WKY rats by inducing morphological changes, explaining in part the impaired immunity that develops in organisms that are exposed to chronic stress

    S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis

    No full text
    Rationale: A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. Objectives: The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. Methods: The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. Measurements and Main Results: We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. Conclusions: Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB
    corecore